Loading…
The small myelin-associated glycoprotein binds to tubulin and microtubules
The myelin-associated glycoprotein (MAG) exists as two isoforms, differing only by their respective cytoplasmic domains, that have been suggested to function in the formation and maintenance of myelin. In the present study, a 50 kDa protein binding directly to the small MAG (S-MAG) cytoplasmic domai...
Saved in:
Published in: | Brain research. Molecular brain research. 2001-02, Vol.87 (1), p.22-30 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The myelin-associated glycoprotein (MAG) exists as two isoforms, differing only by their respective cytoplasmic domains, that have been suggested to function in the formation and maintenance of myelin. In the present study, a 50 kDa protein binding directly to the small MAG (S-MAG) cytoplasmic domain was detected and identified as tubulin, the core component of the microtubular cytoskeleton. In vitro, the S-MAG cytoplasmic domain slowed the polymerization rate of tubulin and co-purified with assembled microtubules. A significant sequence homology was found between the tau family tubulin-binding repeats and the carboxy-terminus of S-MAG. Our results indicate that S-MAG is the first member of the Ig superfamily that can be classified as a microtubule-associated protein, and place S-MAG in a dynamic structural complex that could participate in linking the axonal surface and the myelinating Schwann cell cytoskeleton. |
---|---|
ISSN: | 0169-328X 1872-6941 |
DOI: | 10.1016/S0169-328X(00)00270-9 |