Loading…

The small myelin-associated glycoprotein binds to tubulin and microtubules

The myelin-associated glycoprotein (MAG) exists as two isoforms, differing only by their respective cytoplasmic domains, that have been suggested to function in the formation and maintenance of myelin. In the present study, a 50 kDa protein binding directly to the small MAG (S-MAG) cytoplasmic domai...

Full description

Saved in:
Bibliographic Details
Published in:Brain research. Molecular brain research. 2001-02, Vol.87 (1), p.22-30
Main Authors: Kursula, Petri, Lehto, Veli-Pekka, Heape, Anthony M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The myelin-associated glycoprotein (MAG) exists as two isoforms, differing only by their respective cytoplasmic domains, that have been suggested to function in the formation and maintenance of myelin. In the present study, a 50 kDa protein binding directly to the small MAG (S-MAG) cytoplasmic domain was detected and identified as tubulin, the core component of the microtubular cytoskeleton. In vitro, the S-MAG cytoplasmic domain slowed the polymerization rate of tubulin and co-purified with assembled microtubules. A significant sequence homology was found between the tau family tubulin-binding repeats and the carboxy-terminus of S-MAG. Our results indicate that S-MAG is the first member of the Ig superfamily that can be classified as a microtubule-associated protein, and place S-MAG in a dynamic structural complex that could participate in linking the axonal surface and the myelinating Schwann cell cytoskeleton.
ISSN:0169-328X
1872-6941
DOI:10.1016/S0169-328X(00)00270-9