Loading…
A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders
Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study...
Saved in:
Published in: | Aggressive behavior 2007-07, Vol.33 (4), p.339-352 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3 |
container_end_page | 352 |
container_issue | 4 |
container_start_page | 339 |
container_title | Aggressive behavior |
container_volume | 33 |
creator | Odgers, Candice L. Moretti, Marlene M. Burnette, Mandi L. Chauhan, Preeti Waite, Dennis Reppucci, N. Dickon |
description | Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007. ©2007 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/ab.20190 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70669993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70669993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1URLcFiV-AfKq4pIzjOLaP21VpK1XlUgnExXLsCbjkY7GThf339XYXOFWcZjR69OjVO4S8ZXDOAMoPtjkvgWl4QRYMtCpKzuURWQDoumAVfDkmJyk9ADBWCXhFjpkUmguhF6Rb0s5OOEx0Y2OwTYe0Hz12YfhG7XodR-u-02mkwWcmtNvdPc3NtF1jomNLE8YwzonawdNNGLudqcXeZs_DvMEh5GVsWxw8xvSavGxtl_DNYZ6S-4-X96vr4vbT1c1qeVs4rhQU2CjXMJdX7Zn0Tles9hyFxgoEF4pVrrSac64BvapbrarGyQprzsrSeX5KzvbaHP_njGkyfUgOu84OmLMaCXWtdRb8D2RaMiUEy-D7PejimFLE1qxj6G3cGgZm9wFjG_P0gYy-Ozjnpkf_DzxUnoFiD_zK3WyfFZnlxR_hgQ9pwt9_eRt_mFpyKcznuysjV9eru0p9NTV_BHBannU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19718551</pqid></control><display><type>article</type><title>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</title><source>Wiley</source><creator>Odgers, Candice L. ; Moretti, Marlene M. ; Burnette, Mandi L. ; Chauhan, Preeti ; Waite, Dennis ; Reppucci, N. Dickon</creator><creatorcontrib>Odgers, Candice L. ; Moretti, Marlene M. ; Burnette, Mandi L. ; Chauhan, Preeti ; Waite, Dennis ; Reppucci, N. Dickon</creatorcontrib><description>Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007. ©2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0096-140X</identifier><identifier>EISSN: 1098-2337</identifier><identifier>DOI: 10.1002/ab.20190</identifier><identifier>PMID: 17593559</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adolescent ; adolescent females ; Adult ; Diagnosis, Differential ; Family - psychology ; Female ; Humans ; Juvenile Delinquency - classification ; Juvenile Delinquency - psychology ; Juvenile Delinquency - statistics & numerical data ; juvenile offenders ; latent class analysis ; Likelihood Functions ; Models, Psychological ; Peer Group ; Prisoners - psychology ; Risk Factors ; self-report of offending ; Social Behavior Disorders - classification ; Social Behavior Disorders - diagnosis ; Social Behavior Disorders - psychology ; Southeastern United States ; subtypes ; violence ; Violence - psychology</subject><ispartof>Aggressive behavior, 2007-07, Vol.33 (4), p.339-352</ispartof><rights>2007 Wiley‐Liss, Inc.</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</citedby><cites>FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17593559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odgers, Candice L.</creatorcontrib><creatorcontrib>Moretti, Marlene M.</creatorcontrib><creatorcontrib>Burnette, Mandi L.</creatorcontrib><creatorcontrib>Chauhan, Preeti</creatorcontrib><creatorcontrib>Waite, Dennis</creatorcontrib><creatorcontrib>Reppucci, N. Dickon</creatorcontrib><title>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</title><title>Aggressive behavior</title><addtitle>Aggr. Behav</addtitle><description>Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007. ©2007 Wiley‐Liss, Inc.</description><subject>Adolescent</subject><subject>adolescent females</subject><subject>Adult</subject><subject>Diagnosis, Differential</subject><subject>Family - psychology</subject><subject>Female</subject><subject>Humans</subject><subject>Juvenile Delinquency - classification</subject><subject>Juvenile Delinquency - psychology</subject><subject>Juvenile Delinquency - statistics & numerical data</subject><subject>juvenile offenders</subject><subject>latent class analysis</subject><subject>Likelihood Functions</subject><subject>Models, Psychological</subject><subject>Peer Group</subject><subject>Prisoners - psychology</subject><subject>Risk Factors</subject><subject>self-report of offending</subject><subject>Social Behavior Disorders - classification</subject><subject>Social Behavior Disorders - diagnosis</subject><subject>Social Behavior Disorders - psychology</subject><subject>Southeastern United States</subject><subject>subtypes</subject><subject>violence</subject><subject>Violence - psychology</subject><issn>0096-140X</issn><issn>1098-2337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1URLcFiV-AfKq4pIzjOLaP21VpK1XlUgnExXLsCbjkY7GThf339XYXOFWcZjR69OjVO4S8ZXDOAMoPtjkvgWl4QRYMtCpKzuURWQDoumAVfDkmJyk9ADBWCXhFjpkUmguhF6Rb0s5OOEx0Y2OwTYe0Hz12YfhG7XodR-u-02mkwWcmtNvdPc3NtF1jomNLE8YwzonawdNNGLudqcXeZs_DvMEh5GVsWxw8xvSavGxtl_DNYZ6S-4-X96vr4vbT1c1qeVs4rhQU2CjXMJdX7Zn0Tles9hyFxgoEF4pVrrSac64BvapbrarGyQprzsrSeX5KzvbaHP_njGkyfUgOu84OmLMaCXWtdRb8D2RaMiUEy-D7PejimFLE1qxj6G3cGgZm9wFjG_P0gYy-Ozjnpkf_DzxUnoFiD_zK3WyfFZnlxR_hgQ9pwt9_eRt_mFpyKcznuysjV9eru0p9NTV_BHBannU</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Odgers, Candice L.</creator><creator>Moretti, Marlene M.</creator><creator>Burnette, Mandi L.</creator><creator>Chauhan, Preeti</creator><creator>Waite, Dennis</creator><creator>Reppucci, N. Dickon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200707</creationdate><title>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</title><author>Odgers, Candice L. ; Moretti, Marlene M. ; Burnette, Mandi L. ; Chauhan, Preeti ; Waite, Dennis ; Reppucci, N. Dickon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adolescent</topic><topic>adolescent females</topic><topic>Adult</topic><topic>Diagnosis, Differential</topic><topic>Family - psychology</topic><topic>Female</topic><topic>Humans</topic><topic>Juvenile Delinquency - classification</topic><topic>Juvenile Delinquency - psychology</topic><topic>Juvenile Delinquency - statistics & numerical data</topic><topic>juvenile offenders</topic><topic>latent class analysis</topic><topic>Likelihood Functions</topic><topic>Models, Psychological</topic><topic>Peer Group</topic><topic>Prisoners - psychology</topic><topic>Risk Factors</topic><topic>self-report of offending</topic><topic>Social Behavior Disorders - classification</topic><topic>Social Behavior Disorders - diagnosis</topic><topic>Social Behavior Disorders - psychology</topic><topic>Southeastern United States</topic><topic>subtypes</topic><topic>violence</topic><topic>Violence - psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odgers, Candice L.</creatorcontrib><creatorcontrib>Moretti, Marlene M.</creatorcontrib><creatorcontrib>Burnette, Mandi L.</creatorcontrib><creatorcontrib>Chauhan, Preeti</creatorcontrib><creatorcontrib>Waite, Dennis</creatorcontrib><creatorcontrib>Reppucci, N. Dickon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Aggressive behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odgers, Candice L.</au><au>Moretti, Marlene M.</au><au>Burnette, Mandi L.</au><au>Chauhan, Preeti</au><au>Waite, Dennis</au><au>Reppucci, N. Dickon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</atitle><jtitle>Aggressive behavior</jtitle><addtitle>Aggr. Behav</addtitle><date>2007-07</date><risdate>2007</risdate><volume>33</volume><issue>4</issue><spage>339</spage><epage>352</epage><pages>339-352</pages><issn>0096-140X</issn><eissn>1098-2337</eissn><abstract>Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007. ©2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17593559</pmid><doi>10.1002/ab.20190</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-140X |
ispartof | Aggressive behavior, 2007-07, Vol.33 (4), p.339-352 |
issn | 0096-140X 1098-2337 |
language | eng |
recordid | cdi_proquest_miscellaneous_70669993 |
source | Wiley |
subjects | Adolescent adolescent females Adult Diagnosis, Differential Family - psychology Female Humans Juvenile Delinquency - classification Juvenile Delinquency - psychology Juvenile Delinquency - statistics & numerical data juvenile offenders latent class analysis Likelihood Functions Models, Psychological Peer Group Prisoners - psychology Risk Factors self-report of offending Social Behavior Disorders - classification Social Behavior Disorders - diagnosis Social Behavior Disorders - psychology Southeastern United States subtypes violence Violence - psychology |
title | A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20latent%20variable%20modeling%20approach%20to%20identifying%20subtypes%20of%20serious%20and%20violent%20female%20juvenile%20offenders&rft.jtitle=Aggressive%20behavior&rft.au=Odgers,%20Candice%20L.&rft.date=2007-07&rft.volume=33&rft.issue=4&rft.spage=339&rft.epage=352&rft.pages=339-352&rft.issn=0096-140X&rft.eissn=1098-2337&rft_id=info:doi/10.1002/ab.20190&rft_dat=%3Cproquest_cross%3E70669993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19718551&rft_id=info:pmid/17593559&rfr_iscdi=true |