Loading…

A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders

Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study...

Full description

Saved in:
Bibliographic Details
Published in:Aggressive behavior 2007-07, Vol.33 (4), p.339-352
Main Authors: Odgers, Candice L., Moretti, Marlene M., Burnette, Mandi L., Chauhan, Preeti, Waite, Dennis, Reppucci, N. Dickon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3
cites cdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3
container_end_page 352
container_issue 4
container_start_page 339
container_title Aggressive behavior
container_volume 33
creator Odgers, Candice L.
Moretti, Marlene M.
Burnette, Mandi L.
Chauhan, Preeti
Waite, Dennis
Reppucci, N. Dickon
description Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007.  ©2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/ab.20190
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70669993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70669993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1URLcFiV-AfKq4pIzjOLaP21VpK1XlUgnExXLsCbjkY7GThf339XYXOFWcZjR69OjVO4S8ZXDOAMoPtjkvgWl4QRYMtCpKzuURWQDoumAVfDkmJyk9ADBWCXhFjpkUmguhF6Rb0s5OOEx0Y2OwTYe0Hz12YfhG7XodR-u-02mkwWcmtNvdPc3NtF1jomNLE8YwzonawdNNGLudqcXeZs_DvMEh5GVsWxw8xvSavGxtl_DNYZ6S-4-X96vr4vbT1c1qeVs4rhQU2CjXMJdX7Zn0Tles9hyFxgoEF4pVrrSac64BvapbrarGyQprzsrSeX5KzvbaHP_njGkyfUgOu84OmLMaCXWtdRb8D2RaMiUEy-D7PejimFLE1qxj6G3cGgZm9wFjG_P0gYy-Ozjnpkf_DzxUnoFiD_zK3WyfFZnlxR_hgQ9pwt9_eRt_mFpyKcznuysjV9eru0p9NTV_BHBannU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19718551</pqid></control><display><type>article</type><title>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</title><source>Wiley</source><creator>Odgers, Candice L. ; Moretti, Marlene M. ; Burnette, Mandi L. ; Chauhan, Preeti ; Waite, Dennis ; Reppucci, N. Dickon</creator><creatorcontrib>Odgers, Candice L. ; Moretti, Marlene M. ; Burnette, Mandi L. ; Chauhan, Preeti ; Waite, Dennis ; Reppucci, N. Dickon</creatorcontrib><description>Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007.  ©2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0096-140X</identifier><identifier>EISSN: 1098-2337</identifier><identifier>DOI: 10.1002/ab.20190</identifier><identifier>PMID: 17593559</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adolescent ; adolescent females ; Adult ; Diagnosis, Differential ; Family - psychology ; Female ; Humans ; Juvenile Delinquency - classification ; Juvenile Delinquency - psychology ; Juvenile Delinquency - statistics &amp; numerical data ; juvenile offenders ; latent class analysis ; Likelihood Functions ; Models, Psychological ; Peer Group ; Prisoners - psychology ; Risk Factors ; self-report of offending ; Social Behavior Disorders - classification ; Social Behavior Disorders - diagnosis ; Social Behavior Disorders - psychology ; Southeastern United States ; subtypes ; violence ; Violence - psychology</subject><ispartof>Aggressive behavior, 2007-07, Vol.33 (4), p.339-352</ispartof><rights>2007 Wiley‐Liss, Inc.</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</citedby><cites>FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17593559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odgers, Candice L.</creatorcontrib><creatorcontrib>Moretti, Marlene M.</creatorcontrib><creatorcontrib>Burnette, Mandi L.</creatorcontrib><creatorcontrib>Chauhan, Preeti</creatorcontrib><creatorcontrib>Waite, Dennis</creatorcontrib><creatorcontrib>Reppucci, N. Dickon</creatorcontrib><title>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</title><title>Aggressive behavior</title><addtitle>Aggr. Behav</addtitle><description>Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007.  ©2007 Wiley‐Liss, Inc.</description><subject>Adolescent</subject><subject>adolescent females</subject><subject>Adult</subject><subject>Diagnosis, Differential</subject><subject>Family - psychology</subject><subject>Female</subject><subject>Humans</subject><subject>Juvenile Delinquency - classification</subject><subject>Juvenile Delinquency - psychology</subject><subject>Juvenile Delinquency - statistics &amp; numerical data</subject><subject>juvenile offenders</subject><subject>latent class analysis</subject><subject>Likelihood Functions</subject><subject>Models, Psychological</subject><subject>Peer Group</subject><subject>Prisoners - psychology</subject><subject>Risk Factors</subject><subject>self-report of offending</subject><subject>Social Behavior Disorders - classification</subject><subject>Social Behavior Disorders - diagnosis</subject><subject>Social Behavior Disorders - psychology</subject><subject>Southeastern United States</subject><subject>subtypes</subject><subject>violence</subject><subject>Violence - psychology</subject><issn>0096-140X</issn><issn>1098-2337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1URLcFiV-AfKq4pIzjOLaP21VpK1XlUgnExXLsCbjkY7GThf339XYXOFWcZjR69OjVO4S8ZXDOAMoPtjkvgWl4QRYMtCpKzuURWQDoumAVfDkmJyk9ADBWCXhFjpkUmguhF6Rb0s5OOEx0Y2OwTYe0Hz12YfhG7XodR-u-02mkwWcmtNvdPc3NtF1jomNLE8YwzonawdNNGLudqcXeZs_DvMEh5GVsWxw8xvSavGxtl_DNYZ6S-4-X96vr4vbT1c1qeVs4rhQU2CjXMJdX7Zn0Tles9hyFxgoEF4pVrrSac64BvapbrarGyQprzsrSeX5KzvbaHP_njGkyfUgOu84OmLMaCXWtdRb8D2RaMiUEy-D7PejimFLE1qxj6G3cGgZm9wFjG_P0gYy-Ozjnpkf_DzxUnoFiD_zK3WyfFZnlxR_hgQ9pwt9_eRt_mFpyKcznuysjV9eru0p9NTV_BHBannU</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Odgers, Candice L.</creator><creator>Moretti, Marlene M.</creator><creator>Burnette, Mandi L.</creator><creator>Chauhan, Preeti</creator><creator>Waite, Dennis</creator><creator>Reppucci, N. Dickon</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200707</creationdate><title>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</title><author>Odgers, Candice L. ; Moretti, Marlene M. ; Burnette, Mandi L. ; Chauhan, Preeti ; Waite, Dennis ; Reppucci, N. Dickon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adolescent</topic><topic>adolescent females</topic><topic>Adult</topic><topic>Diagnosis, Differential</topic><topic>Family - psychology</topic><topic>Female</topic><topic>Humans</topic><topic>Juvenile Delinquency - classification</topic><topic>Juvenile Delinquency - psychology</topic><topic>Juvenile Delinquency - statistics &amp; numerical data</topic><topic>juvenile offenders</topic><topic>latent class analysis</topic><topic>Likelihood Functions</topic><topic>Models, Psychological</topic><topic>Peer Group</topic><topic>Prisoners - psychology</topic><topic>Risk Factors</topic><topic>self-report of offending</topic><topic>Social Behavior Disorders - classification</topic><topic>Social Behavior Disorders - diagnosis</topic><topic>Social Behavior Disorders - psychology</topic><topic>Southeastern United States</topic><topic>subtypes</topic><topic>violence</topic><topic>Violence - psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odgers, Candice L.</creatorcontrib><creatorcontrib>Moretti, Marlene M.</creatorcontrib><creatorcontrib>Burnette, Mandi L.</creatorcontrib><creatorcontrib>Chauhan, Preeti</creatorcontrib><creatorcontrib>Waite, Dennis</creatorcontrib><creatorcontrib>Reppucci, N. Dickon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Aggressive behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odgers, Candice L.</au><au>Moretti, Marlene M.</au><au>Burnette, Mandi L.</au><au>Chauhan, Preeti</au><au>Waite, Dennis</au><au>Reppucci, N. Dickon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders</atitle><jtitle>Aggressive behavior</jtitle><addtitle>Aggr. Behav</addtitle><date>2007-07</date><risdate>2007</risdate><volume>33</volume><issue>4</issue><spage>339</spage><epage>352</epage><pages>339-352</pages><issn>0096-140X</issn><eissn>1098-2337</eissn><abstract>Females have recently become an important population in research related to serious and violent juvenile offending. Although a small body of research exists on girls in the deep end of the system, very few studies have examined the degree of heterogeneity within high‐risk female samples. This study applied latent class analysis (LCA) to identify subgroups of female juvenile offenders based on their self‐report of offending profiles (N=133). Results supported a three‐class solution with subgroups characterized by patterns of ‘violent and delinquent’, ‘delinquency only’, and ‘low’ offending patterns. The LCA solution was replicated in an independent sample of high‐risk females. The ‘violent and delinquent’ class was characterized by significantly higher rates of DSM‐IV diagnoses for internalizing disorders, affect dysregulation, exposure to violence (within the home, school and neighborhood), and familial histories of criminality. Implications for future research, policy and clinical practice are discussed. Aggr. Behav. 33:339–352, 2007.  ©2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17593559</pmid><doi>10.1002/ab.20190</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-140X
ispartof Aggressive behavior, 2007-07, Vol.33 (4), p.339-352
issn 0096-140X
1098-2337
language eng
recordid cdi_proquest_miscellaneous_70669993
source Wiley
subjects Adolescent
adolescent females
Adult
Diagnosis, Differential
Family - psychology
Female
Humans
Juvenile Delinquency - classification
Juvenile Delinquency - psychology
Juvenile Delinquency - statistics & numerical data
juvenile offenders
latent class analysis
Likelihood Functions
Models, Psychological
Peer Group
Prisoners - psychology
Risk Factors
self-report of offending
Social Behavior Disorders - classification
Social Behavior Disorders - diagnosis
Social Behavior Disorders - psychology
Southeastern United States
subtypes
violence
Violence - psychology
title A latent variable modeling approach to identifying subtypes of serious and violent female juvenile offenders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20latent%20variable%20modeling%20approach%20to%20identifying%20subtypes%20of%20serious%20and%20violent%20female%20juvenile%20offenders&rft.jtitle=Aggressive%20behavior&rft.au=Odgers,%20Candice%20L.&rft.date=2007-07&rft.volume=33&rft.issue=4&rft.spage=339&rft.epage=352&rft.pages=339-352&rft.issn=0096-140X&rft.eissn=1098-2337&rft_id=info:doi/10.1002/ab.20190&rft_dat=%3Cproquest_cross%3E70669993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3880-eb8cb1c8809d17dc9416d3e59e40535814c2a933390ed86f984bc74e63122cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19718551&rft_id=info:pmid/17593559&rfr_iscdi=true