Loading…

Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis

MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductan...

Full description

Saved in:
Bibliographic Details
Published in:The FASEB journal 2006-02, Vol.20 (2), p.293-301
Main Authors: Abbott, Geoffrey W, Butler, Margaret H, Goldstein, Steve A. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501M-5e1978ea1980c988b4a9e588fee3777e565ffe053686c6d17dfa66ee185e1f223
cites cdi_FETCH-LOGICAL-c501M-5e1978ea1980c988b4a9e588fee3777e565ffe053686c6d17dfa66ee185e1f223
container_end_page 301
container_issue 2
container_start_page 293
container_title The FASEB journal
container_volume 20
creator Abbott, Geoffrey W
Butler, Margaret H
Goldstein, Steve A. N
description MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK[subscript a] [approximately]7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.--Abbott, G. W., Butler, M. H., Goldstein, S. A. N. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.
doi_str_mv 10.1096/fj.05-5070com
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70719493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70719493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501M-5e1978ea1980c988b4a9e588fee3777e565ffe053686c6d17dfa66ee185e1f223</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhyBV84pbFjmPH6Q1WLF9dtaL0bHmT8carxE7tBJR_wU_GS1bqjdNopOd5pZkXodeUrCmpxHtzXBOecVKS2vdP0IpyRjIhBXmKVkRWeSYEkxfoRYxHQgglVDxHF1QURSVJvkJ_blsfh9aHudOj9Q5r1-Ah-NG7ZfcGO7CHdu-DdQe8sz9ucxztCPEKm8nVj5IeWz-0c7S-84f5JP6Ds--_2LrAgx91jHbqcd1q56CL2Do8QLC-sXWyg-6SG1-iZ0Z3EV6d5yW63376ufmSXd98_rr5cJ3VnNBdxoFWpQRN0xl1JeW-0BVwKQ0AK8sSuODGAOEsvaIWDS0bo4UAoDKZJs_ZJXq35KZjHyaIo-ptrKHrtAM_RVWSklZFxRKYLWAdfIwBjBqC7XWYFSXqVIEyR0W4OleQ-Dfn4GnfQ_NIn3-egKsF-G07mP-fprZ3H_PtN8JP--Zml-S3i2y0V_oQbFT3dzmhLFXL85JV7C_PsqB1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70719493</pqid></control><display><type>article</type><title>Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Abbott, Geoffrey W ; Butler, Margaret H ; Goldstein, Steve A. N</creator><creatorcontrib>Abbott, Geoffrey W ; Butler, Margaret H ; Goldstein, Steve A. N</creatorcontrib><description>MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK[subscript a] [approximately]7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.--Abbott, G. W., Butler, M. H., Goldstein, S. A. N. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.05-5070com</identifier><identifier>PMID: 16449802</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology</publisher><subject>Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Conserved Sequence ; Cricetinae ; Genetic Predisposition to Disease ; Humans ; Ion Channel Gating ; KCNE3 ; Kv3.4 ; MiRP2 ; Molecular Sequence Data ; Mutation ; Paralyses, Familial Periodic - metabolism ; Paralyses, Familial Periodic - physiopathology ; periodic paralysis ; Phosphorylation ; Potassium Channels, Voltage-Gated - chemistry ; Potassium Channels, Voltage-Gated - genetics ; Potassium Channels, Voltage-Gated - metabolism ; Protein Structure, Tertiary ; Protons ; Shaw Potassium Channels - genetics ; Shaw Potassium Channels - metabolism</subject><ispartof>The FASEB journal, 2006-02, Vol.20 (2), p.293-301</ispartof><rights>FASEB</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501M-5e1978ea1980c988b4a9e588fee3777e565ffe053686c6d17dfa66ee185e1f223</citedby><cites>FETCH-LOGICAL-c501M-5e1978ea1980c988b4a9e588fee3777e565ffe053686c6d17dfa66ee185e1f223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16449802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abbott, Geoffrey W</creatorcontrib><creatorcontrib>Butler, Margaret H</creatorcontrib><creatorcontrib>Goldstein, Steve A. N</creatorcontrib><title>Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK[subscript a] [approximately]7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.--Abbott, G. W., Butler, M. H., Goldstein, S. A. N. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cell Line</subject><subject>Conserved Sequence</subject><subject>Cricetinae</subject><subject>Genetic Predisposition to Disease</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>KCNE3</subject><subject>Kv3.4</subject><subject>MiRP2</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Paralyses, Familial Periodic - metabolism</subject><subject>Paralyses, Familial Periodic - physiopathology</subject><subject>periodic paralysis</subject><subject>Phosphorylation</subject><subject>Potassium Channels, Voltage-Gated - chemistry</subject><subject>Potassium Channels, Voltage-Gated - genetics</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Protons</subject><subject>Shaw Potassium Channels - genetics</subject><subject>Shaw Potassium Channels - metabolism</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvhyBV84pbFjmPH6Q1WLF9dtaL0bHmT8carxE7tBJR_wU_GS1bqjdNopOd5pZkXodeUrCmpxHtzXBOecVKS2vdP0IpyRjIhBXmKVkRWeSYEkxfoRYxHQgglVDxHF1QURSVJvkJ_blsfh9aHudOj9Q5r1-Ah-NG7ZfcGO7CHdu-DdQe8sz9ucxztCPEKm8nVj5IeWz-0c7S-84f5JP6Ds--_2LrAgx91jHbqcd1q56CL2Do8QLC-sXWyg-6SG1-iZ0Z3EV6d5yW63376ufmSXd98_rr5cJ3VnNBdxoFWpQRN0xl1JeW-0BVwKQ0AK8sSuODGAOEsvaIWDS0bo4UAoDKZJs_ZJXq35KZjHyaIo-ptrKHrtAM_RVWSklZFxRKYLWAdfIwBjBqC7XWYFSXqVIEyR0W4OleQ-Dfn4GnfQ_NIn3-egKsF-G07mP-fprZ3H_PtN8JP--Zml-S3i2y0V_oQbFT3dzmhLFXL85JV7C_PsqB1</recordid><startdate>200602</startdate><enddate>200602</enddate><creator>Abbott, Geoffrey W</creator><creator>Butler, Margaret H</creator><creator>Goldstein, Steve A. N</creator><general>Federation of American Societies for Experimental Biology</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200602</creationdate><title>Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis</title><author>Abbott, Geoffrey W ; Butler, Margaret H ; Goldstein, Steve A. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501M-5e1978ea1980c988b4a9e588fee3777e565ffe053686c6d17dfa66ee185e1f223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cell Line</topic><topic>Conserved Sequence</topic><topic>Cricetinae</topic><topic>Genetic Predisposition to Disease</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>KCNE3</topic><topic>Kv3.4</topic><topic>MiRP2</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Paralyses, Familial Periodic - metabolism</topic><topic>Paralyses, Familial Periodic - physiopathology</topic><topic>periodic paralysis</topic><topic>Phosphorylation</topic><topic>Potassium Channels, Voltage-Gated - chemistry</topic><topic>Potassium Channels, Voltage-Gated - genetics</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Protons</topic><topic>Shaw Potassium Channels - genetics</topic><topic>Shaw Potassium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbott, Geoffrey W</creatorcontrib><creatorcontrib>Butler, Margaret H</creatorcontrib><creatorcontrib>Goldstein, Steve A. N</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbott, Geoffrey W</au><au>Butler, Margaret H</au><au>Goldstein, Steve A. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2006-02</date><risdate>2006</risdate><volume>20</volume><issue>2</issue><spage>293</spage><epage>301</epage><pages>293-301</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>MinK-related peptide 2 (MiRP2) and Kv3.4 subunits assemble in skeletal muscle to create subthreshold, voltage-gated potassium channels. MiRP2 acts on Kv3.4 to shift the voltage dependence of activation, speed recovery from inactivation, suppress cumulative inactivation and increase unitary conductance. We previously found an R83H missense mutation in MiRP2 that segregated with periodic paralysis in two families and diminished the effects of MiRP2 on Kv3.4. Here we show that MiRP2 has a single, functional PKC phosphorylation site at serine 82 and that normal MiRP2-Kv3.4 function requires phosphorylation of the site. The R83H variant does not prevent PKC phosphorylation of neighboring S82; rather, the change shifts the voltage dependence of activation and endows MiRP2-Kv3.4 channels with sensitivity to changes in intracellular pH across the physiological range. Thus, current passed by single R83H channels decreases as internal pH is lowered (pK[subscript a] [approximately]7.3, consistent with histidine protonation) whereas wild-type channels are largely insensitive. These findings identify a key regulatory domain in MiRP2 and suggest a mechanistic link between acidosis and episodes of periodic paralysis.--Abbott, G. W., Butler, M. H., Goldstein, S. A. N. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology</pub><pmid>16449802</pmid><doi>10.1096/fj.05-5070com</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2006-02, Vol.20 (2), p.293-301
issn 0892-6638
1530-6860
language eng
recordid cdi_proquest_miscellaneous_70719493
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Amino Acid Sequence
Animals
Binding Sites
Cell Line
Conserved Sequence
Cricetinae
Genetic Predisposition to Disease
Humans
Ion Channel Gating
KCNE3
Kv3.4
MiRP2
Molecular Sequence Data
Mutation
Paralyses, Familial Periodic - metabolism
Paralyses, Familial Periodic - physiopathology
periodic paralysis
Phosphorylation
Potassium Channels, Voltage-Gated - chemistry
Potassium Channels, Voltage-Gated - genetics
Potassium Channels, Voltage-Gated - metabolism
Protein Structure, Tertiary
Protons
Shaw Potassium Channels - genetics
Shaw Potassium Channels - metabolism
title Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20and%20protonation%20of%20neighboring%20MiRP2%20sites:%20function%20and%20pathophysiology%20of%20MiRP2-Kv3.4%20potassium%20channels%20in%20periodic%20paralysis&rft.jtitle=The%20FASEB%20journal&rft.au=Abbott,%20Geoffrey%20W&rft.date=2006-02&rft.volume=20&rft.issue=2&rft.spage=293&rft.epage=301&rft.pages=293-301&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.05-5070com&rft_dat=%3Cproquest_cross%3E70719493%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501M-5e1978ea1980c988b4a9e588fee3777e565ffe053686c6d17dfa66ee185e1f223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70719493&rft_id=info:pmid/16449802&rfr_iscdi=true