Loading…
Cardiotropin-1 and Myocardial Strain Change Heterogeneously in Cardiomyopathy
Background The pacing model of heart failure produces heterogeneous changes in wall stress and myocyte diameter. The purpose of this study was to measure regional changes in cardiotrophin-1 (CT-1), a cytokine thought to play a role in LV remodeling, and regional changes in LV strain as measured with...
Saved in:
Published in: | The Journal of surgical research 2007-08, Vol.141 (2), p.277-283 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background The pacing model of heart failure produces heterogeneous changes in wall stress and myocyte diameter. The purpose of this study was to measure regional changes in cardiotrophin-1 (CT-1), a cytokine thought to play a role in LV remodeling, and regional changes in LV strain as measured with magnetic resonance imaging. Materials and methods Dilated cardiomyopathy was induced in nine mongrel dogs over 4 wk by rapid pacing using a right ventricular epicardial lead. Baseline CT-1 was measured from an apical myocardial biopsy, and regional CT-1 was measured from anterior, lateral, inferior, and septal walls after the induction of heart failure and in six control dogs. Tissue tagged images were divided into similar regions and minimal principal strain (MPS), ejection fraction, and ventricular volumes were compared after induction of heart failure. Results After induction of heart failure, LV ejection fraction and end-diastolic volume differed significantly from baseline ( P < 0.01 and P = 0.02, respectively). Additionally, regional CT-1 and MPS were significantly different ( P < 0.01 for both). Cardiotrophin-1 increased significantly in the inferior and septal walls (both P < 0.01) but not in the anterior or lateral walls (both P = NS). Minimum principal strain decreased significantly in the inferior and septal walls (both P < 0.01) but not in the anterior or lateral walls (both P = NS). Conclusion The pacing model of heart failure produces heterogeneous changes in regional CT-1 and wall motion as measured by MPS. The greatest regional changes are closest to the pacemaker site: the inferior and septal walls. These differences in regional CT-1 may account for previously noted myocyte hypertrophy and preserved ventricular function in these regions. |
---|---|
ISSN: | 0022-4804 1095-8673 |
DOI: | 10.1016/j.jss.2006.12.539 |