Loading…

Hot spots in prion protein for pathogenic conversion

Prion proteins are key molecules in transmissible spongiform encephalopathies (TSEs), but the precise mechanism of the conversion from the cellular form (PrPC) to the scrapie form (PrPSc) is still unknown. Here we discovered a chemical chaperone to stabilize the PrPC conformation and identified the...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2007-07, Vol.104 (29), p.11921-11926
Main Authors: Kuwata, Kazuo, Nishida, Noriyuki, Matsumoto, Tomoharu, Kamatari, Yuji O, Hosokawa-Muto, Junji, Kodama, Kota, Nakamura, Hironori K, Kimura, Kiminori, Kawasaki, Makoto, Takakura, Yuka, Shirabe, Susumu, Takata, Jiro, Kataoka, Yasufumi, Katamine, Shigeru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prion proteins are key molecules in transmissible spongiform encephalopathies (TSEs), but the precise mechanism of the conversion from the cellular form (PrPC) to the scrapie form (PrPSc) is still unknown. Here we discovered a chemical chaperone to stabilize the PrPC conformation and identified the hot spots to stop the pathogenic conversion. We conducted in silico screening to find compounds that fitted into a "pocket" created by residues undergoing the conformational rearrangements between the native and the sparsely populated high-energy states (PrP*) and that directly bind to those residues. Forty-four selected compounds were tested in a TSE-infected cell culture model, among which one, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide, termed GN8, efficiently reduced PrPSc. Subsequently, administration of GN8 was found to prolong the survival of TSE-infected mice. Heteronuclear NMR and computer simulation showed that the specific binding sites are the A-S2 loop (N159) and the region from helix B (V189, T192, and K194) to B-C loop (E196), indicating that the intercalation of these distant regions (hot spots) hampers the pathogenic conversion process. Dynamics-based drug discovery strategy, demonstrated here focusing on the hot spots of PrPC, will open the way to the development of novel anti-prion drugs.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0702671104