Loading…

A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors

Ultra-thin body of p-type field-effect transistors were developed as transducer for biosensors. Changes of conductance resulted from the changes of the surface potentials of ultra-thin body field-effect transistors (UTB-FETs) due to surface chemical modifications were demonstrated. The channel surfa...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2008-07, Vol.23 (12), p.1883-1886
Main Authors: Sheu, J.-T., Chen, C.C., Chang, K.S., Li, Y.-K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-70fa6facb9a6add2ab6fd027064422d0efc772163b181e4e257dd7be444291943
cites cdi_FETCH-LOGICAL-c415t-70fa6facb9a6add2ab6fd027064422d0efc772163b181e4e257dd7be444291943
container_end_page 1886
container_issue 12
container_start_page 1883
container_title Biosensors & bioelectronics
container_volume 23
creator Sheu, J.-T.
Chen, C.C.
Chang, K.S.
Li, Y.-K.
description Ultra-thin body of p-type field-effect transistors were developed as transducer for biosensors. Changes of conductance resulted from the changes of the surface potentials of ultra-thin body field-effect transistors (UTB-FETs) due to surface chemical modifications were demonstrated. The channel surface of UTB-FETs were modified with N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) and then gold nanoparticles (AuNPs) to immobilize the bio-component, the genetically engineered Δ 5-3-ketosteroid isomerase (Art_KSI) or the Art_KSI conjugated with charged reporter (Art_KSI_mA51). The binding of charge-based molecules or nanoparticles has been demonstrated to strongly affect the conductivity of UTB-FETs; the increase or decrease of the conductance depends on the polarity of the immobilized molecules or nanoparticles. A new protocol involving the detection of a non-charged analyte relied on the competitive binding of analyte (19-norandrostendione) and a charged reporter (mA51) with KSI. When exposed to a 19-norandrostendione solution (10 μM), the conductance of Art_KSI_mA51-modified UTB-FET increased by 265 nS (∼12%). On the other hand, conductance of Art_KSI-modified UTB-FET showed no distinct change under the same detection conditions.
doi_str_mv 10.1016/j.bios.2008.02.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70756788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566308000961</els_id><sourcerecordid>70756788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-70fa6facb9a6add2ab6fd027064422d0efc772163b181e4e257dd7be444291943</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYO4uOPqH_Agubi3nq2k00k3eFkWV4UFL3oO6aSyk6GnMyZpYf69aWbQm0JBKOqrR-U9Qt4x2DJg8m6_HUPMWw7Qb4HXEi_IhvWqbQRvu5dkA0Mnm07K9pq8znkPAIoN8Ipcs15Ay4ZuQ_b39BhzDmOYQjnR6KnDgraEOK9N2SGd49zYnUnPSEeT0VEzm-lUMNMlh_mZLlNJpim7MNMxuhP1ASfXoPdVhtbRnEMuMeU35MqbKePby3tDfjx--v7wpXn69vnrw_1TYwXrSqPAG-mNHQcjjXPcjNI74AqkEJw7QG-V4ky2I-sZCuSdck6NKOp4YINob8jtWfeY4s8Fc9GHkC1Ok5kxLlkrUJ1Uff9fkIPiIEBWkJ9Bm6pXCb0-pnAw6aQZ6DUKvddrFHqNQgOvtZ7x_qK-jAd0f1cu3lfgwwUw2ZrJV6dsyH84Du2w_rpyH88cVtN-BUw624CzRRdStVi7GP51x2_Cl6hf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20720406</pqid></control><display><type>article</type><title>A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors</title><source>Elsevier</source><creator>Sheu, J.-T. ; Chen, C.C. ; Chang, K.S. ; Li, Y.-K.</creator><creatorcontrib>Sheu, J.-T. ; Chen, C.C. ; Chang, K.S. ; Li, Y.-K.</creatorcontrib><description>Ultra-thin body of p-type field-effect transistors were developed as transducer for biosensors. Changes of conductance resulted from the changes of the surface potentials of ultra-thin body field-effect transistors (UTB-FETs) due to surface chemical modifications were demonstrated. The channel surface of UTB-FETs were modified with N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) and then gold nanoparticles (AuNPs) to immobilize the bio-component, the genetically engineered Δ 5-3-ketosteroid isomerase (Art_KSI) or the Art_KSI conjugated with charged reporter (Art_KSI_mA51). The binding of charge-based molecules or nanoparticles has been demonstrated to strongly affect the conductivity of UTB-FETs; the increase or decrease of the conductance depends on the polarity of the immobilized molecules or nanoparticles. A new protocol involving the detection of a non-charged analyte relied on the competitive binding of analyte (19-norandrostendione) and a charged reporter (mA51) with KSI. When exposed to a 19-norandrostendione solution (10 μM), the conductance of Art_KSI_mA51-modified UTB-FET increased by 265 nS (∼12%). On the other hand, conductance of Art_KSI-modified UTB-FET showed no distinct change under the same detection conditions.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2008.02.024</identifier><identifier>PMID: 18403195</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>19-Norandrostendione ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensors ; Biotechnology ; Electrochemistry - instrumentation ; Electrochemistry - methods ; Equipment Design ; Equipment Failure Analysis ; Feasibility Studies ; Fundamental and applied biological sciences. Psychology ; Gold nanoparticles ; Methods. Procedures. Technologies ; Miniaturization ; N-[3-(Trimethoxysilyl)propyl]ethylenediamine ; Static Electricity ; Transistors, Electronic ; Ultra-thin body field-effect transistor ; Various methods and equipments ; Δ 5-3-Ketosteroid isomerase</subject><ispartof>Biosensors &amp; bioelectronics, 2008-07, Vol.23 (12), p.1883-1886</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-70fa6facb9a6add2ab6fd027064422d0efc772163b181e4e257dd7be444291943</citedby><cites>FETCH-LOGICAL-c415t-70fa6facb9a6add2ab6fd027064422d0efc772163b181e4e257dd7be444291943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20392706$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18403195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sheu, J.-T.</creatorcontrib><creatorcontrib>Chen, C.C.</creatorcontrib><creatorcontrib>Chang, K.S.</creatorcontrib><creatorcontrib>Li, Y.-K.</creatorcontrib><title>A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Ultra-thin body of p-type field-effect transistors were developed as transducer for biosensors. Changes of conductance resulted from the changes of the surface potentials of ultra-thin body field-effect transistors (UTB-FETs) due to surface chemical modifications were demonstrated. The channel surface of UTB-FETs were modified with N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) and then gold nanoparticles (AuNPs) to immobilize the bio-component, the genetically engineered Δ 5-3-ketosteroid isomerase (Art_KSI) or the Art_KSI conjugated with charged reporter (Art_KSI_mA51). The binding of charge-based molecules or nanoparticles has been demonstrated to strongly affect the conductivity of UTB-FETs; the increase or decrease of the conductance depends on the polarity of the immobilized molecules or nanoparticles. A new protocol involving the detection of a non-charged analyte relied on the competitive binding of analyte (19-norandrostendione) and a charged reporter (mA51) with KSI. When exposed to a 19-norandrostendione solution (10 μM), the conductance of Art_KSI_mA51-modified UTB-FET increased by 265 nS (∼12%). On the other hand, conductance of Art_KSI-modified UTB-FET showed no distinct change under the same detection conditions.</description><subject>19-Norandrostendione</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrochemistry - methods</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feasibility Studies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gold nanoparticles</subject><subject>Methods. Procedures. Technologies</subject><subject>Miniaturization</subject><subject>N-[3-(Trimethoxysilyl)propyl]ethylenediamine</subject><subject>Static Electricity</subject><subject>Transistors, Electronic</subject><subject>Ultra-thin body field-effect transistor</subject><subject>Various methods and equipments</subject><subject>Δ 5-3-Ketosteroid isomerase</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhYO4uOPqH_Agubi3nq2k00k3eFkWV4UFL3oO6aSyk6GnMyZpYf69aWbQm0JBKOqrR-U9Qt4x2DJg8m6_HUPMWw7Qb4HXEi_IhvWqbQRvu5dkA0Mnm07K9pq8znkPAIoN8Ipcs15Ay4ZuQ_b39BhzDmOYQjnR6KnDgraEOK9N2SGd49zYnUnPSEeT0VEzm-lUMNMlh_mZLlNJpim7MNMxuhP1ASfXoPdVhtbRnEMuMeU35MqbKePby3tDfjx--v7wpXn69vnrw_1TYwXrSqPAG-mNHQcjjXPcjNI74AqkEJw7QG-V4ky2I-sZCuSdck6NKOp4YINob8jtWfeY4s8Fc9GHkC1Ok5kxLlkrUJ1Uff9fkIPiIEBWkJ9Bm6pXCb0-pnAw6aQZ6DUKvddrFHqNQgOvtZ7x_qK-jAd0f1cu3lfgwwUw2ZrJV6dsyH84Du2w_rpyH88cVtN-BUw624CzRRdStVi7GP51x2_Cl6hf</recordid><startdate>20080715</startdate><enddate>20080715</enddate><creator>Sheu, J.-T.</creator><creator>Chen, C.C.</creator><creator>Chang, K.S.</creator><creator>Li, Y.-K.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080715</creationdate><title>A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors</title><author>Sheu, J.-T. ; Chen, C.C. ; Chang, K.S. ; Li, Y.-K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-70fa6facb9a6add2ab6fd027064422d0efc772163b181e4e257dd7be444291943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>19-Norandrostendione</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrochemistry - methods</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feasibility Studies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gold nanoparticles</topic><topic>Methods. Procedures. Technologies</topic><topic>Miniaturization</topic><topic>N-[3-(Trimethoxysilyl)propyl]ethylenediamine</topic><topic>Static Electricity</topic><topic>Transistors, Electronic</topic><topic>Ultra-thin body field-effect transistor</topic><topic>Various methods and equipments</topic><topic>Δ 5-3-Ketosteroid isomerase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheu, J.-T.</creatorcontrib><creatorcontrib>Chen, C.C.</creatorcontrib><creatorcontrib>Chang, K.S.</creatorcontrib><creatorcontrib>Li, Y.-K.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheu, J.-T.</au><au>Chen, C.C.</au><au>Chang, K.S.</au><au>Li, Y.-K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2008-07-15</date><risdate>2008</risdate><volume>23</volume><issue>12</issue><spage>1883</spage><epage>1886</epage><pages>1883-1886</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Ultra-thin body of p-type field-effect transistors were developed as transducer for biosensors. Changes of conductance resulted from the changes of the surface potentials of ultra-thin body field-effect transistors (UTB-FETs) due to surface chemical modifications were demonstrated. The channel surface of UTB-FETs were modified with N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) and then gold nanoparticles (AuNPs) to immobilize the bio-component, the genetically engineered Δ 5-3-ketosteroid isomerase (Art_KSI) or the Art_KSI conjugated with charged reporter (Art_KSI_mA51). The binding of charge-based molecules or nanoparticles has been demonstrated to strongly affect the conductivity of UTB-FETs; the increase or decrease of the conductance depends on the polarity of the immobilized molecules or nanoparticles. A new protocol involving the detection of a non-charged analyte relied on the competitive binding of analyte (19-norandrostendione) and a charged reporter (mA51) with KSI. When exposed to a 19-norandrostendione solution (10 μM), the conductance of Art_KSI_mA51-modified UTB-FET increased by 265 nS (∼12%). On the other hand, conductance of Art_KSI-modified UTB-FET showed no distinct change under the same detection conditions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><pmid>18403195</pmid><doi>10.1016/j.bios.2008.02.024</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2008-07, Vol.23 (12), p.1883-1886
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_70756788
source Elsevier
subjects 19-Norandrostendione
Biological and medical sciences
Biosensing Techniques - instrumentation
Biosensors
Biotechnology
Electrochemistry - instrumentation
Electrochemistry - methods
Equipment Design
Equipment Failure Analysis
Feasibility Studies
Fundamental and applied biological sciences. Psychology
Gold nanoparticles
Methods. Procedures. Technologies
Miniaturization
N-[3-(Trimethoxysilyl)propyl]ethylenediamine
Static Electricity
Transistors, Electronic
Ultra-thin body field-effect transistor
Various methods and equipments
Δ 5-3-Ketosteroid isomerase
title A possibility of detection of the non-charge based analytes using ultra-thin body field-effect transistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20possibility%20of%20detection%20of%20the%20non-charge%20based%20analytes%20using%20ultra-thin%20body%20field-effect%20transistors&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Sheu,%20J.-T.&rft.date=2008-07-15&rft.volume=23&rft.issue=12&rft.spage=1883&rft.epage=1886&rft.pages=1883-1886&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2008.02.024&rft_dat=%3Cproquest_cross%3E70756788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-70fa6facb9a6add2ab6fd027064422d0efc772163b181e4e257dd7be444291943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20720406&rft_id=info:pmid/18403195&rfr_iscdi=true