Loading…

Epithelial and endothelial barriers in the olfactory region of the nasal cavity of the rat

The olfactory ensheathing (glial) cells (OECs) have been identified to be useful candidate cells to support regeneration after being transplanted into injured fiber tracts of the central nervous system. We investigated by means of immunocytochemistry and freeze-fracturing the morphology and molecula...

Full description

Saved in:
Bibliographic Details
Published in:Histochemistry and cell biology 2008-07, Vol.130 (1), p.127-140
Main Authors: Wolburg, Hartwig, Wolburg-Buchholz, Karen, Sam, Heike, Horvát, Sándor, Deli, Maria A., Mack, Andreas F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The olfactory ensheathing (glial) cells (OECs) have been identified to be useful candidate cells to support regeneration after being transplanted into injured fiber tracts of the central nervous system. We investigated by means of immunocytochemistry and freeze-fracturing the morphology and molecular composition of OEC tight junctions in the rat olfactory system. In addition, we tested the hypothesis whether tight junctions and orthogonal arrays of particles (OAPs) which contain the water channel protein aquaporin-4 (AQP4), are mutually exclusive as suggested in previous studies. In OECs, we found neither OAPs nor AQP4, but tight junctions immunoreactive for ZO-1, occludin, and claudin-5, but immunonegative for ZO-2 and claudin-3. To shed more light on the function of OEC tight junctions, we tested the permeability and tight junction composition of blood vessels and fila olfactoria. We found them both, permeable for infused lanthanum nitrate, and to be immunopositive for ZO-1 and claudin-5. The tight junctions of the OECs are discussed to be responsible for micro-compartmentalization within the olfactory fiber tract providing a benefit for axonal growth.
ISSN:0948-6143
1432-119X
DOI:10.1007/s00418-008-0410-2