Loading…
Lignin engineering
Lignins are aromatic polymers that are present mainly in secondarily thickened plant cell walls. Several decades of research have elucidated the main biosynthetic routes toward the monolignols and demonstrated that lignin amounts can be engineered and that plants can cope with large shifts in p-hydr...
Saved in:
Published in: | Current opinion in plant biology 2008-06, Vol.11 (3), p.278-285 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lignins are aromatic polymers that are present mainly in secondarily thickened plant cell walls. Several decades of research have elucidated the main biosynthetic routes toward the monolignols and demonstrated that lignin amounts can be engineered and that plants can cope with large shifts in
p-hydroxyphenyl/guaiacyl/syringyl (H/G/S) lignin compositional ratios. It has also become clear that lignins incorporate many more units than the three monolignols described in biochemistry textbooks. Together with the theory that lignin polymerization is under chemical control, observations hint at opportunities to design lignin structure to the needs of agriculture. An increasing number of examples illustrates that lignin engineering can improve the processing efficiency of plant biomass for pulping, forage digestibility and biofuels. Systems approaches, in which the plant's response to engineering of a single gene in the pathway is studied at the organismal level, are beginning to shed light on the interaction of lignin biosynthesis with other metabolic pathways and processes. |
---|---|
ISSN: | 1369-5266 1879-0356 |
DOI: | 10.1016/j.pbi.2008.03.005 |