Loading…
Characterization of Peripheral Regulatory CD4+ T Cells That Prevent Diabetes Onset in Nonobese Diabetic Mice
The period that precedes onset of insulin-dependent diabetes mellitus corresponds to an active dynamic state in which pathogenic autoreactive T cells are kept from destroying beta cells by regulatory T cells. In prediabetic nonobese diabetic (NOD) mice, CD4+ splenocytes were shown to prevent diabete...
Saved in:
Published in: | The Journal of immunology (1950) 2000-01, Vol.164 (1), p.240-247 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The period that precedes onset of insulin-dependent diabetes mellitus corresponds to an active dynamic state in which pathogenic autoreactive T cells are kept from destroying beta cells by regulatory T cells. In prediabetic nonobese diabetic (NOD) mice, CD4+ splenocytes were shown to prevent diabetes transfer in immunodeficient NOD recipients. We now demonstrate that regulatory splenocytes belong to the CD4+ CD62Lhigh T cell subset that comprises a vast majority of naive cells producing low levels of IL-2 and IFN-gamma and no IL-4 and IL-10 upon in vitro stimulation. Consistently, the inhibition of diabetes transfer was not mediated by IL-4 and IL-10. Regulatory cells homed to the pancreas and modified the migration of diabetogenic to the islets, which resulted in a decreased insulitis severity. The efficiency of CD62L+ T cells was dose dependent, independent of sex and disease prevalence. Protection mechanisms did not involve the CD62L molecule, an observation that may relate to the fact that CD4+ CD62Lhigh lymph node cells were less potent than their splenic counterparts. Regulatory T cells were detectable after weaning and persist until disease onset, sustaining the notion that diabetes is a late and abrupt event. Thus, the CD62L molecule appears as a unique marker that can discriminate diabetogenic (previously shown to be CD62L-) from regulatory T cells. The phenotypic and functional characteristics of protective CD4+ CD62L+ cells suggest they are different from Th2-, Tr1-, and NK T-type cells, reported to be implicated in the control of diabetes in NOD mice, and may represent a new immunoregulatory population. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.164.1.240 |