Loading…
Paclitaxel Induces Apoptosis in Saos-2 Cells with CD95L Upregulation and Bcl-2 Phosphorylation
We examined the effect of paclitaxel on human osteoblastic cells Saos-2 to determine if paclitaxel can affect proliferation and apoptosis. We used a p53-negative cell line in order to mimic the loss of function frequently observed at the clinical level. Paclitaxel induced cell death in a dose- and t...
Saved in:
Published in: | Experimental cell research 1999-10, Vol.252 (1), p.134-143 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We examined the effect of paclitaxel on human osteoblastic cells Saos-2 to determine if paclitaxel can affect proliferation and apoptosis. We used a p53-negative cell line in order to mimic the loss of function frequently observed at the clinical level. Paclitaxel induced cell death in a dose- and time-dependent manner. Marked nuclear condensation and fragmentation of chromatin were observed by Hoechst 33258 stain, DNA ladder formation, electron microscopy, and flow cytometry at concentrations as low as 100 nM, a concentration which can be achieved by infusion in human plasma. At 100 nM, paclitaxel induced a G2 arrest at 8 h of treatment. The cells then continued to accumulate in G2 until 72 h when the percentage of apoptotic events reached 54%. At the molecular level, Bcl-2 protein was phosphorylated at 16 h and PARP protein was cleaved, indicating the activation of caspase-3-like proteases. Caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK rescued Saos-2 cells from paclitaxel-induced apoptosis. CD95 expression was constantly high, while CD95L showed a threefold increase in expression. This suggests that, following the G2 arrest, apoptosis is induced through the CD95/CD95L system. |
---|---|
ISSN: | 0014-4827 1090-2422 |
DOI: | 10.1006/excr.1999.4591 |