Loading…

Variations of Synaptotagmin I, Synaptotagmin IV, and Synaptophysin mRNA Levels in Rat Hippocampus during the Estrous Cycle

Periodic changes in ovarian steroid levels during fertility cycles affect learning both in humans and in rats in parallel with electrophysiological and morphological fluctuations in selective neuronal populations. In particular, during the estrous cycle of the female rat, hippocampal CA1 region unde...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 1999-10, Vol.159 (2), p.574-583
Main Authors: Crispino, Marianna, Stone, David J., Wei, Min, Anderson, Christopher P., Tocco, Georges, Finch, Caleb E., Baudry, Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Periodic changes in ovarian steroid levels during fertility cycles affect learning both in humans and in rats in parallel with electrophysiological and morphological fluctuations in selective neuronal populations. In particular, during the estrous cycle of the female rat, hippocampal CA1 region undergoes cyclic modifications in synaptic density. To investigate the molecular mechanisms involved in synaptic remodeling during the estrous cycle, we analyzed the expression of three presynaptic markers, synaptotagmin I, synaptotagmin IV, and synaptophysin, in the female adult rat brain by in situ hybridization. Relative abundance in mRNA for these three markers was quantified at four phases of the estrous cycle: diestrus, proestrus (AM and PM), and estrus. mRNA levels for syt1 exhibited cyclic variations in pyramidal neurons of the CA3 region of hippocampus during the estrous cycle, while mRNA levels for syt4 and SYN were relatively invariant in this or other regions of the hippocampus. Because CA3 pyramidal neurons make synaptic contacts in CA1, modulation of syt1 expression in CA3 may participate in the changes in synaptic density observed in CA1 during the estrous cycle. Furthermore, both syt1 and SYN mRNA varied cyclically in layer II, but not in layer III of entorhinal cortex, while syt4 remained unchanged throughout the cycle. These data suggest that regular variations in steroid hormone levels during fertility cycles may alter the properties of several networks involved in information processing and learning and memory through altered levels of presynaptic proteins.
ISSN:0014-4886
1090-2430
DOI:10.1006/exnr.1999.7186