Loading…

The Reduction of In Vitro Radiation‐Induced Fas‐Related Apoptosis in CD34+ Progenitor Cells by SCF, FLT‐3 Ligand, TPO, and IL‐3 in Combination Resulted in CD34+ Cell Proliferation and Differentiation

Recovery from radiation‐induced (RI) bone marrow aplasia depends on appropriate cytokine support. The early effects of exogenous cytokines at the hematopoietic stem and progenitor cell (HSPC) level following irradiation are still largely unknown, especially those of survival factors such as stem cel...

Full description

Saved in:
Bibliographic Details
Published in:Stem cells (Dayton, Ohio) Ohio), 1999-01, Vol.17 (5), p.273-285
Main Authors: Drouet, Michel, Mathieu, Jacques, Grenier, Nancy, Multon, Eric, Sotto, Jean‐Jacques, Herodin, Francis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recovery from radiation‐induced (RI) bone marrow aplasia depends on appropriate cytokine support. The early effects of exogenous cytokines at the hematopoietic stem and progenitor cell (HSPC) level following irradiation are still largely unknown, especially those of survival factors such as stem cell factor (SCF) and Flt‐3 ligand (FL). This study was aimed at A) clarifying Fas/Fas‐Ligand (Fas‐L) implication in RI apoptosis of CD34+ cells and B) assessing the capacity of a combination of cytokines to mitigate RI apoptosis in HSPCs in vitro. We showed that most of in vitro gamma‐irradiated CD34+ HSPCs incubated in a medium devoid of cytokines underwent progressive apoptosis‐related changes from 6 h (i.e., decreased CD34 antigen expression, Annexin V binding); then Fas/Fas‐L coexpression occurred from 10 h on. A strong DNA fragmentation, as assessed by TUNEL assay and propidium iodide staining, was observed at 24 h. Within a 2.5‐ to 6‐Gy dose range, the RI apoptotic process finally led to 97% CD34+ cell death within 48 h with a complete loss of functionality. Unirradiated cells incubated in the same conditions displayed a significantly reduced apoptotic pattern. The early addition of a combination of SCF, FL, thrombopoietin, and interleukin 3 (4F) after cell irradiation prevented 15% (2.5 Gy) and 12% (4 Gy) of HSPCs, respectively, from RI apoptosis, whereas these cytokines used as single factors were inefficient. Furthermore, irradiated HSPCs (2.5 Gy) incubated with 4F in a serum‐free culture system for seven days proliferated, giving rise to an increase in the number of total cells (× 5.6‐fold) and CD34+ cells (× 4.2‐fold) and to megakaryocytic and granulomonocytic precursors. These results show that the prevention of apoptosis in in vitro irradiated HSPCs depends on an early combination cytokine support. These data suggest that the early therapeutic administration of anti‐apoptotic cytokines may be critical for preserving functional HSPCs from in vivo radiation damage.
ISSN:1066-5099
1549-4918
DOI:10.1002/stem.170273