Loading…

Diethylcarbamoylating/Nitroxylating Agents as Dual Action Inhibitors of Aldehyde Dehydrogenase:  A Disulfiram−Cyanamide Merger

Benzenesulfohydroxamic acid (Piloty's acid) was functionalized on the hydroxyl group with the N,N-diethylcarbamoyl group, and the hydroxylamine nitrogen was substituted with acetyl (1a), pivaloyl (1b), benzoyl (1c), and ethoxycarbonyl (1d) groups. Only compound 1d inhibited yeast aldehyde dehyd...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 1999-10, Vol.42 (20), p.4016-4020
Main Authors: Conway, Terry T, DeMaster, Eugene G, Goon, David J. W, Shirota, Frances N, Nagasawa, Herbert T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Benzenesulfohydroxamic acid (Piloty's acid) was functionalized on the hydroxyl group with the N,N-diethylcarbamoyl group, and the hydroxylamine nitrogen was substituted with acetyl (1a), pivaloyl (1b), benzoyl (1c), and ethoxycarbonyl (1d) groups. Only compound 1d inhibited yeast aldehyde dehydrogenase (AlDH) in vitro (IC50 169 μM). When administered to rats, 1d significantly raised blood acetaldehyde levels following ethanol challenge, thus serving as a diethylcarbamoylating/nitroxylating, dual action inhibitor of AlDH in vivo. A more potent dual action agent was N-(N,N-diethylcarbamoyl)-O-methylbenzenesulfohydroxamic acid (5c), which was postulated to release diethylcarbamoylnitroxyl (9), a highly potent diethylcarbamoylating/nitroxylating agent, following metabolic O-demethylation in vivo. The dual action inhibition of AlDH exhibited by 1d, and especially 9, constitutes a merger of the mechanism of action of the alcohol deterrent agents, disulfiram and cyanamide.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm990235p