Loading…

Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex

The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost li...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2001-04, Vol.7 (8), p.1670-1678
Main Authors: Lundell, Jan, Jolkkonen, Santtu, Khriachtchev, Leonid, Pettersson, Mika, Räsänen, Markku
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3
container_end_page 1678
container_issue 8
container_start_page 1670
container_title Chemistry : a European journal
container_volume 7
creator Lundell, Jan
Jolkkonen, Santtu
Khriachtchev, Leonid
Pettersson, Mika
Räsänen, Markku
description The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well. Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen. The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure).
doi_str_mv 10.1002/1521-3765(20010417)7:8<1670::AID-CHEM16700>3.0.CO;2-N
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70841936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70841936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3</originalsourceid><addsrcrecordid>eNqVkE2P0zAQhi0EYsvCX0A-ITi4jOPEjsuHVLIfrei2SCxCgsPIjh0IpEmJU9H-exK1dE8cOI1m9M4zo4eQNxzGHCB6yZOIM6Fk8jwC4BBz9UJN0tdcKphMpvMLls0ub4YO3ooxjLPVq4gt75HRae8-GYGOFZOJ0GfkUQg_AEBLIR6SM85FrDWkI_L-xnRtuaPz0FSmK5uamtrRqaXzuuxb-rHbuj1tCtp993S2d23zzdfsXVM77-gsWkUsW9GsWW8qv3tMHhSmCv7JsZ6TT1eXt9mMLVbX82y6YHkMCpjVKcQyT73KDXivnbHeFtxok_hEKM1TcDZOnI2KIvdSSJtaEXMHUnqwIhfn5NmBu2mbX1sfOlyXIfdVZWrfbAMqSGOuhRSnB_K2CaH1BW7acm3aPXLAwTIOtnCwhX8to8IUB6-IvWU8WUaBgNkKI1z23KfHB7Z27d0d9ai1D3w9BH6Xld__19V_Hb0b9nR2oJeh87sT3bQ_USqhEvy8vEbxRS2iD7cXeCX-AJYApRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70841936</pqid></control><display><type>article</type><title>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lundell, Jan ; Jolkkonen, Santtu ; Khriachtchev, Leonid ; Pettersson, Mika ; Räsänen, Markku</creator><creatorcontrib>Lundell, Jan ; Jolkkonen, Santtu ; Khriachtchev, Leonid ; Pettersson, Mika ; Räsänen, Markku</creatorcontrib><description>The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well. Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen. The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/1521-3765(20010417)7:8&lt;1670::AID-CHEM16700&gt;3.0.CO;2-N</identifier><identifier>PMID: 11349908</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag GmbH</publisher><subject>ab initio calculations ; hydrogen bonds ; hydrogen peroxide ; IR spectroscopy</subject><ispartof>Chemistry : a European journal, 2001-04, Vol.7 (8), p.1670-1678</ispartof><rights>2001 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11349908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lundell, Jan</creatorcontrib><creatorcontrib>Jolkkonen, Santtu</creatorcontrib><creatorcontrib>Khriachtchev, Leonid</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Räsänen, Markku</creatorcontrib><title>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</title><title>Chemistry : a European journal</title><addtitle>Chemistry - A European Journal</addtitle><description>The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well. Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen. The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure).</description><subject>ab initio calculations</subject><subject>hydrogen bonds</subject><subject>hydrogen peroxide</subject><subject>IR spectroscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqVkE2P0zAQhi0EYsvCX0A-ITi4jOPEjsuHVLIfrei2SCxCgsPIjh0IpEmJU9H-exK1dE8cOI1m9M4zo4eQNxzGHCB6yZOIM6Fk8jwC4BBz9UJN0tdcKphMpvMLls0ub4YO3ooxjLPVq4gt75HRae8-GYGOFZOJ0GfkUQg_AEBLIR6SM85FrDWkI_L-xnRtuaPz0FSmK5uamtrRqaXzuuxb-rHbuj1tCtp993S2d23zzdfsXVM77-gsWkUsW9GsWW8qv3tMHhSmCv7JsZ6TT1eXt9mMLVbX82y6YHkMCpjVKcQyT73KDXivnbHeFtxok_hEKM1TcDZOnI2KIvdSSJtaEXMHUnqwIhfn5NmBu2mbX1sfOlyXIfdVZWrfbAMqSGOuhRSnB_K2CaH1BW7acm3aPXLAwTIOtnCwhX8to8IUB6-IvWU8WUaBgNkKI1z23KfHB7Z27d0d9ai1D3w9BH6Xld__19V_Hb0b9nR2oJeh87sT3bQ_USqhEvy8vEbxRS2iD7cXeCX-AJYApRI</recordid><startdate>20010417</startdate><enddate>20010417</enddate><creator>Lundell, Jan</creator><creator>Jolkkonen, Santtu</creator><creator>Khriachtchev, Leonid</creator><creator>Pettersson, Mika</creator><creator>Räsänen, Markku</creator><general>WILEY-VCH Verlag GmbH</general><general>WILEY‐VCH Verlag GmbH</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010417</creationdate><title>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</title><author>Lundell, Jan ; Jolkkonen, Santtu ; Khriachtchev, Leonid ; Pettersson, Mika ; Räsänen, Markku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>ab initio calculations</topic><topic>hydrogen bonds</topic><topic>hydrogen peroxide</topic><topic>IR spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundell, Jan</creatorcontrib><creatorcontrib>Jolkkonen, Santtu</creatorcontrib><creatorcontrib>Khriachtchev, Leonid</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Räsänen, Markku</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundell, Jan</au><au>Jolkkonen, Santtu</au><au>Khriachtchev, Leonid</au><au>Pettersson, Mika</au><au>Räsänen, Markku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry - A European Journal</addtitle><date>2001-04-17</date><risdate>2001</risdate><volume>7</volume><issue>8</issue><spage>1670</spage><epage>1678</epage><pages>1670-1678</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well. Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen. The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag GmbH</pub><pmid>11349908</pmid><doi>10.1002/1521-3765(20010417)7:8&lt;1670::AID-CHEM16700&gt;3.0.CO;2-N</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2001-04, Vol.7 (8), p.1670-1678
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_70841936
source Wiley-Blackwell Read & Publish Collection
subjects ab initio calculations
hydrogen bonds
hydrogen peroxide
IR spectroscopy
title Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20Isolation%20and%20Ab%20Initio%20Study%20of%20the%20Hydrogen-Bonded%20H2O2-CO%20Complex&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Lundell,%20Jan&rft.date=2001-04-17&rft.volume=7&rft.issue=8&rft.spage=1670&rft.epage=1678&rft.pages=1670-1678&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/1521-3765(20010417)7:8%3C1670::AID-CHEM16700%3E3.0.CO;2-N&rft_dat=%3Cproquest_cross%3E70841936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70841936&rft_id=info:pmid/11349908&rfr_iscdi=true