Loading…
Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex
The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost li...
Saved in:
Published in: | Chemistry : a European journal 2001-04, Vol.7 (8), p.1670-1678 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3 |
container_end_page | 1678 |
container_issue | 8 |
container_start_page | 1670 |
container_title | Chemistry : a European journal |
container_volume | 7 |
creator | Lundell, Jan Jolkkonen, Santtu Khriachtchev, Leonid Pettersson, Mika Räsänen, Markku |
description | The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well.
Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen.
The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure). |
doi_str_mv | 10.1002/1521-3765(20010417)7:8<1670::AID-CHEM16700>3.0.CO;2-N |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70841936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70841936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3</originalsourceid><addsrcrecordid>eNqVkE2P0zAQhi0EYsvCX0A-ITi4jOPEjsuHVLIfrei2SCxCgsPIjh0IpEmJU9H-exK1dE8cOI1m9M4zo4eQNxzGHCB6yZOIM6Fk8jwC4BBz9UJN0tdcKphMpvMLls0ub4YO3ooxjLPVq4gt75HRae8-GYGOFZOJ0GfkUQg_AEBLIR6SM85FrDWkI_L-xnRtuaPz0FSmK5uamtrRqaXzuuxb-rHbuj1tCtp993S2d23zzdfsXVM77-gsWkUsW9GsWW8qv3tMHhSmCv7JsZ6TT1eXt9mMLVbX82y6YHkMCpjVKcQyT73KDXivnbHeFtxok_hEKM1TcDZOnI2KIvdSSJtaEXMHUnqwIhfn5NmBu2mbX1sfOlyXIfdVZWrfbAMqSGOuhRSnB_K2CaH1BW7acm3aPXLAwTIOtnCwhX8to8IUB6-IvWU8WUaBgNkKI1z23KfHB7Z27d0d9ai1D3w9BH6Xld__19V_Hb0b9nR2oJeh87sT3bQ_USqhEvy8vEbxRS2iD7cXeCX-AJYApRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70841936</pqid></control><display><type>article</type><title>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lundell, Jan ; Jolkkonen, Santtu ; Khriachtchev, Leonid ; Pettersson, Mika ; Räsänen, Markku</creator><creatorcontrib>Lundell, Jan ; Jolkkonen, Santtu ; Khriachtchev, Leonid ; Pettersson, Mika ; Räsänen, Markku</creatorcontrib><description>The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well.
Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen.
The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/1521-3765(20010417)7:8<1670::AID-CHEM16700>3.0.CO;2-N</identifier><identifier>PMID: 11349908</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag GmbH</publisher><subject>ab initio calculations ; hydrogen bonds ; hydrogen peroxide ; IR spectroscopy</subject><ispartof>Chemistry : a European journal, 2001-04, Vol.7 (8), p.1670-1678</ispartof><rights>2001 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11349908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lundell, Jan</creatorcontrib><creatorcontrib>Jolkkonen, Santtu</creatorcontrib><creatorcontrib>Khriachtchev, Leonid</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Räsänen, Markku</creatorcontrib><title>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</title><title>Chemistry : a European journal</title><addtitle>Chemistry - A European Journal</addtitle><description>The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well.
Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen.
The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure).</description><subject>ab initio calculations</subject><subject>hydrogen bonds</subject><subject>hydrogen peroxide</subject><subject>IR spectroscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqVkE2P0zAQhi0EYsvCX0A-ITi4jOPEjsuHVLIfrei2SCxCgsPIjh0IpEmJU9H-exK1dE8cOI1m9M4zo4eQNxzGHCB6yZOIM6Fk8jwC4BBz9UJN0tdcKphMpvMLls0ub4YO3ooxjLPVq4gt75HRae8-GYGOFZOJ0GfkUQg_AEBLIR6SM85FrDWkI_L-xnRtuaPz0FSmK5uamtrRqaXzuuxb-rHbuj1tCtp993S2d23zzdfsXVM77-gsWkUsW9GsWW8qv3tMHhSmCv7JsZ6TT1eXt9mMLVbX82y6YHkMCpjVKcQyT73KDXivnbHeFtxok_hEKM1TcDZOnI2KIvdSSJtaEXMHUnqwIhfn5NmBu2mbX1sfOlyXIfdVZWrfbAMqSGOuhRSnB_K2CaH1BW7acm3aPXLAwTIOtnCwhX8to8IUB6-IvWU8WUaBgNkKI1z23KfHB7Z27d0d9ai1D3w9BH6Xld__19V_Hb0b9nR2oJeh87sT3bQ_USqhEvy8vEbxRS2iD7cXeCX-AJYApRI</recordid><startdate>20010417</startdate><enddate>20010417</enddate><creator>Lundell, Jan</creator><creator>Jolkkonen, Santtu</creator><creator>Khriachtchev, Leonid</creator><creator>Pettersson, Mika</creator><creator>Räsänen, Markku</creator><general>WILEY-VCH Verlag GmbH</general><general>WILEY‐VCH Verlag GmbH</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010417</creationdate><title>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</title><author>Lundell, Jan ; Jolkkonen, Santtu ; Khriachtchev, Leonid ; Pettersson, Mika ; Räsänen, Markku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>ab initio calculations</topic><topic>hydrogen bonds</topic><topic>hydrogen peroxide</topic><topic>IR spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundell, Jan</creatorcontrib><creatorcontrib>Jolkkonen, Santtu</creatorcontrib><creatorcontrib>Khriachtchev, Leonid</creatorcontrib><creatorcontrib>Pettersson, Mika</creatorcontrib><creatorcontrib>Räsänen, Markku</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundell, Jan</au><au>Jolkkonen, Santtu</au><au>Khriachtchev, Leonid</au><au>Pettersson, Mika</au><au>Räsänen, Markku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry - A European Journal</addtitle><date>2001-04-17</date><risdate>2001</risdate><volume>7</volume><issue>8</issue><spage>1670</spage><epage>1678</epage><pages>1670-1678</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The structure, energetics, and infrared spectrum of the H2O2–CO complex have been studied computationally with the use of ab initio calculations and experimentally by FTIR matrix isolation techniques. Computations predict two stable conformations for the H2O2–CO complex, both of which show almost linear hydrogen bonds between the subunits. The carbon‐attached HOOH–CO complex is the lower‐energy form, and it has an interaction energy of −9.0 kJ mol−1 at the CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) level. The higher‐energy form, HOOH–OC, has an interaction energy of −4.7 kJ mol−1 at the same level of theory. Experimentally, only the lower‐energy form, HOOH–CO, was observed in Ar, Kr, and Xe matrices, and the hydrogen bonding results in substantial perturbations of the observed vibrational modes of both complex subunits. UV photolysis of the complex species primarily produces a complex between water and carbon dioxide, but minor amounts of HCO and trans‐HOCO were found as well.
Vetyperoksidin ja hiilimonoksidin muodostamien kompleksien rakenteita, energetiikkaa ja värähdysspektrejä tutkittiin kvanttikemiallisilla laskuilla ja kokeellisella FTIR‐matriisi‐isolaatiotekniikalla. Laskennallisesti löysimme kaksi vetysidottua kompleksia. Pysyvin rakenne syntyy hiilimonoksidin sitoutuessa hiilestä vetyperoksidin OH‐ryhmään ja laskettu interaktioenergia molekyylien välillä on −9.0 kJ mol−1 CCSD(T)/6‐311++G(3df,3pd)//MP2/6‐311++G(3df,3pd) ‐laskutasolla. Hapesta sitoutunut vetysidottu kompleksi on lähes puolet heikompi kuin hiilestä sitoutunut kompleksi. Kokeellisesti me havaitsimme ainoastaan alhaisimman energian muodon, H2O2–CO:n, Ar, Kr ja Xe‐matriiseissa. Vetysidos muuttaa molekyylien värähdysspektrejä, ja näiden siirtymien avulla erotamme kompleksin värähdykset monomeereista. Kompleksin fotolysointi ultraviolettivalolla hajottaa kompleksin ja tuottaa pääasiassa veden ja hiilidioksidin välisen vetysidotun kompleksin. Havaitsimme myös hieman HCO ja trans‐HOCO radikaaleja fotolyysin ja sitä seuranneen lämmityksen jälkeen.
The interaction of the hydrogen‐bonded complex between H2O2 and CO is characterized both experimentally and computationally and is evidenced by the IR bands of the free and complexated OH stretching modes of H2O2 (see figure).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag GmbH</pub><pmid>11349908</pmid><doi>10.1002/1521-3765(20010417)7:8<1670::AID-CHEM16700>3.0.CO;2-N</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2001-04, Vol.7 (8), p.1670-1678 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_70841936 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | ab initio calculations hydrogen bonds hydrogen peroxide IR spectroscopy |
title | Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O2-CO Complex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20Isolation%20and%20Ab%20Initio%20Study%20of%20the%20Hydrogen-Bonded%20H2O2-CO%20Complex&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Lundell,%20Jan&rft.date=2001-04-17&rft.volume=7&rft.issue=8&rft.spage=1670&rft.epage=1678&rft.pages=1670-1678&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/1521-3765(20010417)7:8%3C1670::AID-CHEM16700%3E3.0.CO;2-N&rft_dat=%3Cproquest_cross%3E70841936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4070-b98046c8e7ca0ee9dabebf1a9a5e5379180db45db2ffce636b8b341d066e0b3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70841936&rft_id=info:pmid/11349908&rfr_iscdi=true |