Loading…
A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA
Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97,...
Saved in:
Published in: | Genomics (San Diego, Calif.) Calif.), 2001-04, Vol.73 (1), p.56-65 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323 |
---|---|
cites | cdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323 |
container_end_page | 65 |
container_issue | 1 |
container_start_page | 56 |
container_title | Genomics (San Diego, Calif.) |
container_volume | 73 |
creator | Lee, E-Chiang Yu, Daiguan Martinez de Velasco, J. Tessarollo, Lino Swing, Deborah A. Court, Donald L. Jenkins, Nancy A. Copeland, Neal G. |
description | Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era. |
doi_str_mv | 10.1006/geno.2000.6451 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70844883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754300964516</els_id><sourcerecordid>17891807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhyhH5gLhlsePEcY7pdtsiVSDRcrYce5w1SuzFziLtC_DcdbQrlQviNBrpm1-_5kPoPSVrSgj_PIAP65IQsuZVTV-gFSWiLQSv-Eu0IkKIoqkrdoHepPQzUy0T5Wt0QSmry5rzFfrT4Ts37MYj3lrrtAM_423SO4hO75zCOoyuuFIJDN7sYphCChPgrR-ch8z4AT8c0wwT7ozaz5myIeLvoMPUOx9yO6fxo4oDzAurvMEPh16PwS9rsPiq2-Drr91b9MqqMcG787xEP262j5u74v7b7ZdNd1_oivO5qCtTCaMI1UTXdcuYaExJe2V109dEcKuBceC2bUiZ_1EpsIy1vFWCtaVhJbtEn065-xh-HSDNcnJJwzgqD-GQZENEVQnB_gvSRrRUkCaD6xOoY0gpgpX76CYVj5ISuSiSiyK5KJKLonzw4Zx86Ccwz_jZSQY-ngGVtBptVF679Fcs54QtDcUJg_yv3w6iTIs-DcZF0LM0wf2rwhOC06xv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17891807</pqid></control><display><type>article</type><title>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</title><source>ScienceDirect Journals</source><creator>Lee, E-Chiang ; Yu, Daiguan ; Martinez de Velasco, J. ; Tessarollo, Lino ; Swing, Deborah A. ; Court, Donald L. ; Jenkins, Nancy A. ; Copeland, Neal G.</creator><creatorcontrib>Lee, E-Chiang ; Yu, Daiguan ; Martinez de Velasco, J. ; Tessarollo, Lino ; Swing, Deborah A. ; Court, Donald L. ; Jenkins, Nancy A. ; Copeland, Neal G.</creatorcontrib><description>Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1006/geno.2000.6451</identifier><identifier>PMID: 11352566</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Animals ; arabinose ; bacterial artificial chromosomes ; Bacteriophage lambda - genetics ; Bacteriophage lambda - physiology ; Biological and medical sciences ; Chromosomes, Artificial, Bacterial - genetics ; Cloning, Molecular - methods ; cre gene ; Defective Viruses - genetics ; Defective Viruses - physiology ; Diverse techniques ; DNA, Bacterial - genetics ; DNA, Recombinant - genetics ; Escherichia coli ; Escherichia coli - genetics ; flpe gene ; Fundamental and applied biological sciences. Psychology ; Genes, Bacterial ; Genes, Reporter ; Genetic Engineering - methods ; Mice ; Mice, Transgenic ; Molecular and cellular biology ; Oligodeoxyribonucleotides - chemical synthesis ; Oligodeoxyribonucleotides - genetics ; Phage ^l ; Plasmids - genetics ; Recombination, Genetic ; Transformation, Bacterial</subject><ispartof>Genomics (San Diego, Calif.), 2001-04, Vol.73 (1), p.56-65</ispartof><rights>2001 Academic Press</rights><rights>2001 INIST-CNRS</rights><rights>Copyright 2001 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</citedby><cites>FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1066033$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11352566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Yu, Daiguan</creatorcontrib><creatorcontrib>Martinez de Velasco, J.</creatorcontrib><creatorcontrib>Tessarollo, Lino</creatorcontrib><creatorcontrib>Swing, Deborah A.</creatorcontrib><creatorcontrib>Court, Donald L.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><title>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era.</description><subject>Animals</subject><subject>arabinose</subject><subject>bacterial artificial chromosomes</subject><subject>Bacteriophage lambda - genetics</subject><subject>Bacteriophage lambda - physiology</subject><subject>Biological and medical sciences</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Cloning, Molecular - methods</subject><subject>cre gene</subject><subject>Defective Viruses - genetics</subject><subject>Defective Viruses - physiology</subject><subject>Diverse techniques</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Recombinant - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>flpe gene</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Bacterial</subject><subject>Genes, Reporter</subject><subject>Genetic Engineering - methods</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Molecular and cellular biology</subject><subject>Oligodeoxyribonucleotides - chemical synthesis</subject><subject>Oligodeoxyribonucleotides - genetics</subject><subject>Phage ^l</subject><subject>Plasmids - genetics</subject><subject>Recombination, Genetic</subject><subject>Transformation, Bacterial</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvhyhH5gLhlsePEcY7pdtsiVSDRcrYce5w1SuzFziLtC_DcdbQrlQviNBrpm1-_5kPoPSVrSgj_PIAP65IQsuZVTV-gFSWiLQSv-Eu0IkKIoqkrdoHepPQzUy0T5Wt0QSmry5rzFfrT4Ts37MYj3lrrtAM_423SO4hO75zCOoyuuFIJDN7sYphCChPgrR-ch8z4AT8c0wwT7ozaz5myIeLvoMPUOx9yO6fxo4oDzAurvMEPh16PwS9rsPiq2-Drr91b9MqqMcG787xEP262j5u74v7b7ZdNd1_oivO5qCtTCaMI1UTXdcuYaExJe2V109dEcKuBceC2bUiZ_1EpsIy1vFWCtaVhJbtEn065-xh-HSDNcnJJwzgqD-GQZENEVQnB_gvSRrRUkCaD6xOoY0gpgpX76CYVj5ISuSiSiyK5KJKLonzw4Zx86Ccwz_jZSQY-ngGVtBptVF679Fcs54QtDcUJg_yv3w6iTIs-DcZF0LM0wf2rwhOC06xv</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Lee, E-Chiang</creator><creator>Yu, Daiguan</creator><creator>Martinez de Velasco, J.</creator><creator>Tessarollo, Lino</creator><creator>Swing, Deborah A.</creator><creator>Court, Donald L.</creator><creator>Jenkins, Nancy A.</creator><creator>Copeland, Neal G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20010401</creationdate><title>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</title><author>Lee, E-Chiang ; Yu, Daiguan ; Martinez de Velasco, J. ; Tessarollo, Lino ; Swing, Deborah A. ; Court, Donald L. ; Jenkins, Nancy A. ; Copeland, Neal G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>arabinose</topic><topic>bacterial artificial chromosomes</topic><topic>Bacteriophage lambda - genetics</topic><topic>Bacteriophage lambda - physiology</topic><topic>Biological and medical sciences</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Cloning, Molecular - methods</topic><topic>cre gene</topic><topic>Defective Viruses - genetics</topic><topic>Defective Viruses - physiology</topic><topic>Diverse techniques</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Recombinant - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>flpe gene</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Bacterial</topic><topic>Genes, Reporter</topic><topic>Genetic Engineering - methods</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Molecular and cellular biology</topic><topic>Oligodeoxyribonucleotides - chemical synthesis</topic><topic>Oligodeoxyribonucleotides - genetics</topic><topic>Phage ^l</topic><topic>Plasmids - genetics</topic><topic>Recombination, Genetic</topic><topic>Transformation, Bacterial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Yu, Daiguan</creatorcontrib><creatorcontrib>Martinez de Velasco, J.</creatorcontrib><creatorcontrib>Tessarollo, Lino</creatorcontrib><creatorcontrib>Swing, Deborah A.</creatorcontrib><creatorcontrib>Court, Donald L.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, E-Chiang</au><au>Yu, Daiguan</au><au>Martinez de Velasco, J.</au><au>Tessarollo, Lino</au><au>Swing, Deborah A.</au><au>Court, Donald L.</au><au>Jenkins, Nancy A.</au><au>Copeland, Neal G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>73</volume><issue>1</issue><spage>56</spage><epage>65</epage><pages>56-65</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>11352566</pmid><doi>10.1006/geno.2000.6451</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7543 |
ispartof | Genomics (San Diego, Calif.), 2001-04, Vol.73 (1), p.56-65 |
issn | 0888-7543 1089-8646 |
language | eng |
recordid | cdi_proquest_miscellaneous_70844883 |
source | ScienceDirect Journals |
subjects | Animals arabinose bacterial artificial chromosomes Bacteriophage lambda - genetics Bacteriophage lambda - physiology Biological and medical sciences Chromosomes, Artificial, Bacterial - genetics Cloning, Molecular - methods cre gene Defective Viruses - genetics Defective Viruses - physiology Diverse techniques DNA, Bacterial - genetics DNA, Recombinant - genetics Escherichia coli Escherichia coli - genetics flpe gene Fundamental and applied biological sciences. Psychology Genes, Bacterial Genes, Reporter Genetic Engineering - methods Mice Mice, Transgenic Molecular and cellular biology Oligodeoxyribonucleotides - chemical synthesis Oligodeoxyribonucleotides - genetics Phage ^l Plasmids - genetics Recombination, Genetic Transformation, Bacterial |
title | A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Efficient%20Escherichia%20coli-Based%20Chromosome%20Engineering%20System%20Adapted%20for%20Recombinogenic%20Targeting%20and%20Subcloning%20of%20BAC%20DNA&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Lee,%20E-Chiang&rft.date=2001-04-01&rft.volume=73&rft.issue=1&rft.spage=56&rft.epage=65&rft.pages=56-65&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1006/geno.2000.6451&rft_dat=%3Cproquest_cross%3E17891807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17891807&rft_id=info:pmid/11352566&rfr_iscdi=true |