Loading…

A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA

Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97,...

Full description

Saved in:
Bibliographic Details
Published in:Genomics (San Diego, Calif.) Calif.), 2001-04, Vol.73 (1), p.56-65
Main Authors: Lee, E-Chiang, Yu, Daiguan, Martinez de Velasco, J., Tessarollo, Lino, Swing, Deborah A., Court, Donald L., Jenkins, Nancy A., Copeland, Neal G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323
cites cdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323
container_end_page 65
container_issue 1
container_start_page 56
container_title Genomics (San Diego, Calif.)
container_volume 73
creator Lee, E-Chiang
Yu, Daiguan
Martinez de Velasco, J.
Tessarollo, Lino
Swing, Deborah A.
Court, Donald L.
Jenkins, Nancy A.
Copeland, Neal G.
description Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era.
doi_str_mv 10.1006/geno.2000.6451
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70844883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754300964516</els_id><sourcerecordid>17891807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhyhH5gLhlsePEcY7pdtsiVSDRcrYce5w1SuzFziLtC_DcdbQrlQviNBrpm1-_5kPoPSVrSgj_PIAP65IQsuZVTV-gFSWiLQSv-Eu0IkKIoqkrdoHepPQzUy0T5Wt0QSmry5rzFfrT4Ts37MYj3lrrtAM_423SO4hO75zCOoyuuFIJDN7sYphCChPgrR-ch8z4AT8c0wwT7ozaz5myIeLvoMPUOx9yO6fxo4oDzAurvMEPh16PwS9rsPiq2-Drr91b9MqqMcG787xEP262j5u74v7b7ZdNd1_oivO5qCtTCaMI1UTXdcuYaExJe2V109dEcKuBceC2bUiZ_1EpsIy1vFWCtaVhJbtEn065-xh-HSDNcnJJwzgqD-GQZENEVQnB_gvSRrRUkCaD6xOoY0gpgpX76CYVj5ISuSiSiyK5KJKLonzw4Zx86Ccwz_jZSQY-ngGVtBptVF679Fcs54QtDcUJg_yv3w6iTIs-DcZF0LM0wf2rwhOC06xv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17891807</pqid></control><display><type>article</type><title>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</title><source>ScienceDirect Journals</source><creator>Lee, E-Chiang ; Yu, Daiguan ; Martinez de Velasco, J. ; Tessarollo, Lino ; Swing, Deborah A. ; Court, Donald L. ; Jenkins, Nancy A. ; Copeland, Neal G.</creator><creatorcontrib>Lee, E-Chiang ; Yu, Daiguan ; Martinez de Velasco, J. ; Tessarollo, Lino ; Swing, Deborah A. ; Court, Donald L. ; Jenkins, Nancy A. ; Copeland, Neal G.</creatorcontrib><description>Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1006/geno.2000.6451</identifier><identifier>PMID: 11352566</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Animals ; arabinose ; bacterial artificial chromosomes ; Bacteriophage lambda - genetics ; Bacteriophage lambda - physiology ; Biological and medical sciences ; Chromosomes, Artificial, Bacterial - genetics ; Cloning, Molecular - methods ; cre gene ; Defective Viruses - genetics ; Defective Viruses - physiology ; Diverse techniques ; DNA, Bacterial - genetics ; DNA, Recombinant - genetics ; Escherichia coli ; Escherichia coli - genetics ; flpe gene ; Fundamental and applied biological sciences. Psychology ; Genes, Bacterial ; Genes, Reporter ; Genetic Engineering - methods ; Mice ; Mice, Transgenic ; Molecular and cellular biology ; Oligodeoxyribonucleotides - chemical synthesis ; Oligodeoxyribonucleotides - genetics ; Phage ^l ; Plasmids - genetics ; Recombination, Genetic ; Transformation, Bacterial</subject><ispartof>Genomics (San Diego, Calif.), 2001-04, Vol.73 (1), p.56-65</ispartof><rights>2001 Academic Press</rights><rights>2001 INIST-CNRS</rights><rights>Copyright 2001 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</citedby><cites>FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1066033$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11352566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Yu, Daiguan</creatorcontrib><creatorcontrib>Martinez de Velasco, J.</creatorcontrib><creatorcontrib>Tessarollo, Lino</creatorcontrib><creatorcontrib>Swing, Deborah A.</creatorcontrib><creatorcontrib>Court, Donald L.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><title>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era.</description><subject>Animals</subject><subject>arabinose</subject><subject>bacterial artificial chromosomes</subject><subject>Bacteriophage lambda - genetics</subject><subject>Bacteriophage lambda - physiology</subject><subject>Biological and medical sciences</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Cloning, Molecular - methods</subject><subject>cre gene</subject><subject>Defective Viruses - genetics</subject><subject>Defective Viruses - physiology</subject><subject>Diverse techniques</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Recombinant - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>flpe gene</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Bacterial</subject><subject>Genes, Reporter</subject><subject>Genetic Engineering - methods</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Molecular and cellular biology</subject><subject>Oligodeoxyribonucleotides - chemical synthesis</subject><subject>Oligodeoxyribonucleotides - genetics</subject><subject>Phage ^l</subject><subject>Plasmids - genetics</subject><subject>Recombination, Genetic</subject><subject>Transformation, Bacterial</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EokvhyhH5gLhlsePEcY7pdtsiVSDRcrYce5w1SuzFziLtC_DcdbQrlQviNBrpm1-_5kPoPSVrSgj_PIAP65IQsuZVTV-gFSWiLQSv-Eu0IkKIoqkrdoHepPQzUy0T5Wt0QSmry5rzFfrT4Ts37MYj3lrrtAM_423SO4hO75zCOoyuuFIJDN7sYphCChPgrR-ch8z4AT8c0wwT7ozaz5myIeLvoMPUOx9yO6fxo4oDzAurvMEPh16PwS9rsPiq2-Drr91b9MqqMcG787xEP262j5u74v7b7ZdNd1_oivO5qCtTCaMI1UTXdcuYaExJe2V109dEcKuBceC2bUiZ_1EpsIy1vFWCtaVhJbtEn065-xh-HSDNcnJJwzgqD-GQZENEVQnB_gvSRrRUkCaD6xOoY0gpgpX76CYVj5ISuSiSiyK5KJKLonzw4Zx86Ccwz_jZSQY-ngGVtBptVF679Fcs54QtDcUJg_yv3w6iTIs-DcZF0LM0wf2rwhOC06xv</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Lee, E-Chiang</creator><creator>Yu, Daiguan</creator><creator>Martinez de Velasco, J.</creator><creator>Tessarollo, Lino</creator><creator>Swing, Deborah A.</creator><creator>Court, Donald L.</creator><creator>Jenkins, Nancy A.</creator><creator>Copeland, Neal G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20010401</creationdate><title>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</title><author>Lee, E-Chiang ; Yu, Daiguan ; Martinez de Velasco, J. ; Tessarollo, Lino ; Swing, Deborah A. ; Court, Donald L. ; Jenkins, Nancy A. ; Copeland, Neal G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>arabinose</topic><topic>bacterial artificial chromosomes</topic><topic>Bacteriophage lambda - genetics</topic><topic>Bacteriophage lambda - physiology</topic><topic>Biological and medical sciences</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Cloning, Molecular - methods</topic><topic>cre gene</topic><topic>Defective Viruses - genetics</topic><topic>Defective Viruses - physiology</topic><topic>Diverse techniques</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Recombinant - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>flpe gene</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Bacterial</topic><topic>Genes, Reporter</topic><topic>Genetic Engineering - methods</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Molecular and cellular biology</topic><topic>Oligodeoxyribonucleotides - chemical synthesis</topic><topic>Oligodeoxyribonucleotides - genetics</topic><topic>Phage ^l</topic><topic>Plasmids - genetics</topic><topic>Recombination, Genetic</topic><topic>Transformation, Bacterial</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, E-Chiang</creatorcontrib><creatorcontrib>Yu, Daiguan</creatorcontrib><creatorcontrib>Martinez de Velasco, J.</creatorcontrib><creatorcontrib>Tessarollo, Lino</creatorcontrib><creatorcontrib>Swing, Deborah A.</creatorcontrib><creatorcontrib>Court, Donald L.</creatorcontrib><creatorcontrib>Jenkins, Nancy A.</creatorcontrib><creatorcontrib>Copeland, Neal G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, E-Chiang</au><au>Yu, Daiguan</au><au>Martinez de Velasco, J.</au><au>Tessarollo, Lino</au><au>Swing, Deborah A.</au><au>Court, Donald L.</au><au>Jenkins, Nancy A.</au><au>Copeland, Neal G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2001-04-01</date><risdate>2001</risdate><volume>73</volume><issue>1</issue><spage>56</spage><epage>65</epage><pages>56-65</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>Recently, a highly efficient recombination system for chromosome engineering in Escherichia coli was described that uses a defective λ prophage to supply functions that protect and recombine a linear DNA targeting cassette with its substrate sequence (Yu et al., 2000, Proc. Natl. Acad. Sci. USA 97, 5978–5983). Importantly, the recombination is proficient with DNA homologies as short as 30–50 bp, making it possible to use PCR-amplified fragments as the targeting cassette. Here, we adapt this prophage system for use in bacterial artificial chromosome (BAC) engineering by transferring it to DH10B cells, a BAC host strain. In addition, arabinose inducible cre and flpe genes are introduced into these cells to facilitate BAC modification using loxP and FRT sites. Next, we demonstrate the utility of this recombination system by using it to target cre to the 3′ end of the mouse neuron-specific enolase (Eno2) gene carried on a 250-kb BAC, which made it possible to generate BAC transgenic mice that specifically express Cre in all mature neurons. In addition, we show that fragments as large as 80 kb can be subcloned from BACs by gap repair using this recombination system, obviating the need for restriction enzymes or DNA ligases. Finally, we show that BACs can be modified with this recombination system in the absence of drug selection. The ability to modify or subclone large fragments of genomic DNA with precision should facilitate many kinds of genomic experiments that were difficult or impossible to perform previously and aid in studies of gene function in the postgenomic era.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>11352566</pmid><doi>10.1006/geno.2000.6451</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 2001-04, Vol.73 (1), p.56-65
issn 0888-7543
1089-8646
language eng
recordid cdi_proquest_miscellaneous_70844883
source ScienceDirect Journals
subjects Animals
arabinose
bacterial artificial chromosomes
Bacteriophage lambda - genetics
Bacteriophage lambda - physiology
Biological and medical sciences
Chromosomes, Artificial, Bacterial - genetics
Cloning, Molecular - methods
cre gene
Defective Viruses - genetics
Defective Viruses - physiology
Diverse techniques
DNA, Bacterial - genetics
DNA, Recombinant - genetics
Escherichia coli
Escherichia coli - genetics
flpe gene
Fundamental and applied biological sciences. Psychology
Genes, Bacterial
Genes, Reporter
Genetic Engineering - methods
Mice
Mice, Transgenic
Molecular and cellular biology
Oligodeoxyribonucleotides - chemical synthesis
Oligodeoxyribonucleotides - genetics
Phage ^l
Plasmids - genetics
Recombination, Genetic
Transformation, Bacterial
title A Highly Efficient Escherichia coli-Based Chromosome Engineering System Adapted for Recombinogenic Targeting and Subcloning of BAC DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A29%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Efficient%20Escherichia%20coli-Based%20Chromosome%20Engineering%20System%20Adapted%20for%20Recombinogenic%20Targeting%20and%20Subcloning%20of%20BAC%20DNA&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Lee,%20E-Chiang&rft.date=2001-04-01&rft.volume=73&rft.issue=1&rft.spage=56&rft.epage=65&rft.pages=56-65&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1006/geno.2000.6451&rft_dat=%3Cproquest_cross%3E17891807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-54d48da01c0c5593387d21bafc7b5086fce36e6f97026454aef33969a8392d323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17891807&rft_id=info:pmid/11352566&rfr_iscdi=true