Loading…

Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors

The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-02, Vol.276 (7), p.4747-4755
Main Authors: Bjørbæk, Christian, Buchholz, Ryan M., Davis, Sarah M., Bates, Sarah H., Pierroz, Dominique D., Gu, Haihua, Neel, Benjamin G., Myers, Martin G., Flier, Jeffrey S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753
cites cdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753
container_end_page 4755
container_issue 7
container_start_page 4747
container_title The Journal of biological chemistry
container_volume 276
creator Bjørbæk, Christian
Buchholz, Ryan M.
Davis, Sarah M.
Bates, Sarah H.
Pierroz, Dominique D.
Gu, Haihua
Neel, Benjamin G.
Myers, Martin G.
Flier, Jeffrey S.
description The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.
doi_str_mv 10.1074/jbc.M007439200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70864946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818462710</els_id><sourcerecordid>70864946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWqtXj7J48LY12SSb5CKUWj-wolQFb2GTnbWRdlOTbcV_b6QFT85lBuZ5h-FB6ITgAcGCXXwYO3jAaaKqwHgH9QiWNKecvO2iHsYFyVXB5QE6jPEDp2KK7KMDkiiupOqhyyu3hvAObZdN_Rxi5pvs-fYpLzLXZuPpfTa0nVtXnfNtZr6zCSy7tJiCTYMP8QjtNdU8wvG299Hr9fhldJtPHm_uRsNJbhkWXV4zkKzhypoSU8OMtIoI1ihBScU5EFlSQxVlViaIMV5UVGJTVaIktOaC0z4639xdBv-5gtjphYsW5vOqBb-KWmBZMsXKBA42oA0-xgCNXga3qMK3Jlj_GtPJmP4zlgKn28srs4D6D98qSsDZBpi599mXC6CN83YGC12IUgvNBBMJkhsIkoS1g6CjddBaqFPAdrr27r8HfgBfOoIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70864946</pqid></control><display><type>article</type><title>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</title><source>ScienceDirect Journals</source><creator>Bjørbæk, Christian ; Buchholz, Ryan M. ; Davis, Sarah M. ; Bates, Sarah H. ; Pierroz, Dominique D. ; Gu, Haihua ; Neel, Benjamin G. ; Myers, Martin G. ; Flier, Jeffrey S.</creator><creatorcontrib>Bjørbæk, Christian ; Buchholz, Ryan M. ; Davis, Sarah M. ; Bates, Sarah H. ; Pierroz, Dominique D. ; Gu, Haihua ; Neel, Benjamin G. ; Myers, Martin G. ; Flier, Jeffrey S.</creatorcontrib><description>The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M007439200</identifier><identifier>PMID: 11085989</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Carrier Proteins - chemistry ; Carrier Proteins - metabolism ; CHO Cells ; Cricetinae ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Early Growth Response Protein 1 ; Hypothalamus - metabolism ; Immediate-Early Proteins ; Intracellular Signaling Peptides and Proteins ; Janus Kinase 2 ; Leptin - pharmacology ; Male ; MAP Kinase Signaling System ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases - metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Promoter Regions, Genetic ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases - genetics ; Protein Tyrosine Phosphatases - physiology ; Protein-Tyrosine Kinases - genetics ; Protein-Tyrosine Kinases - physiology ; Proto-Oncogene Proteins ; Receptors, Cell Surface ; Receptors, Leptin ; RNA, Messenger - biosynthesis ; STAT3 Transcription Factor ; Trans-Activators - metabolism ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Transcription, Genetic ; Transfection</subject><ispartof>The Journal of biological chemistry, 2001-02, Vol.276 (7), p.4747-4755</ispartof><rights>2001 © 2001 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</citedby><cites>FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925818462710$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11085989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bjørbæk, Christian</creatorcontrib><creatorcontrib>Buchholz, Ryan M.</creatorcontrib><creatorcontrib>Davis, Sarah M.</creatorcontrib><creatorcontrib>Bates, Sarah H.</creatorcontrib><creatorcontrib>Pierroz, Dominique D.</creatorcontrib><creatorcontrib>Gu, Haihua</creatorcontrib><creatorcontrib>Neel, Benjamin G.</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><creatorcontrib>Flier, Jeffrey S.</creatorcontrib><title>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.</description><subject>Animals</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - metabolism</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Early Growth Response Protein 1</subject><subject>Hypothalamus - metabolism</subject><subject>Immediate-Early Proteins</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Janus Kinase 2</subject><subject>Leptin - pharmacology</subject><subject>Male</subject><subject>MAP Kinase Signaling System</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 6</subject><subject>Protein Tyrosine Phosphatases - genetics</subject><subject>Protein Tyrosine Phosphatases - physiology</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - physiology</subject><subject>Proto-Oncogene Proteins</subject><subject>Receptors, Cell Surface</subject><subject>Receptors, Leptin</subject><subject>RNA, Messenger - biosynthesis</subject><subject>STAT3 Transcription Factor</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWqtXj7J48LY12SSb5CKUWj-wolQFb2GTnbWRdlOTbcV_b6QFT85lBuZ5h-FB6ITgAcGCXXwYO3jAaaKqwHgH9QiWNKecvO2iHsYFyVXB5QE6jPEDp2KK7KMDkiiupOqhyyu3hvAObZdN_Rxi5pvs-fYpLzLXZuPpfTa0nVtXnfNtZr6zCSy7tJiCTYMP8QjtNdU8wvG299Hr9fhldJtPHm_uRsNJbhkWXV4zkKzhypoSU8OMtIoI1ihBScU5EFlSQxVlViaIMV5UVGJTVaIktOaC0z4639xdBv-5gtjphYsW5vOqBb-KWmBZMsXKBA42oA0-xgCNXga3qMK3Jlj_GtPJmP4zlgKn28srs4D6D98qSsDZBpi599mXC6CN83YGC12IUgvNBBMJkhsIkoS1g6CjddBaqFPAdrr27r8HfgBfOoIM</recordid><startdate>20010216</startdate><enddate>20010216</enddate><creator>Bjørbæk, Christian</creator><creator>Buchholz, Ryan M.</creator><creator>Davis, Sarah M.</creator><creator>Bates, Sarah H.</creator><creator>Pierroz, Dominique D.</creator><creator>Gu, Haihua</creator><creator>Neel, Benjamin G.</creator><creator>Myers, Martin G.</creator><creator>Flier, Jeffrey S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010216</creationdate><title>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</title><author>Bjørbæk, Christian ; Buchholz, Ryan M. ; Davis, Sarah M. ; Bates, Sarah H. ; Pierroz, Dominique D. ; Gu, Haihua ; Neel, Benjamin G. ; Myers, Martin G. ; Flier, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - metabolism</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Early Growth Response Protein 1</topic><topic>Hypothalamus - metabolism</topic><topic>Immediate-Early Proteins</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Janus Kinase 2</topic><topic>Leptin - pharmacology</topic><topic>Male</topic><topic>MAP Kinase Signaling System</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 6</topic><topic>Protein Tyrosine Phosphatases - genetics</topic><topic>Protein Tyrosine Phosphatases - physiology</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - physiology</topic><topic>Proto-Oncogene Proteins</topic><topic>Receptors, Cell Surface</topic><topic>Receptors, Leptin</topic><topic>RNA, Messenger - biosynthesis</topic><topic>STAT3 Transcription Factor</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjørbæk, Christian</creatorcontrib><creatorcontrib>Buchholz, Ryan M.</creatorcontrib><creatorcontrib>Davis, Sarah M.</creatorcontrib><creatorcontrib>Bates, Sarah H.</creatorcontrib><creatorcontrib>Pierroz, Dominique D.</creatorcontrib><creatorcontrib>Gu, Haihua</creatorcontrib><creatorcontrib>Neel, Benjamin G.</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><creatorcontrib>Flier, Jeffrey S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bjørbæk, Christian</au><au>Buchholz, Ryan M.</au><au>Davis, Sarah M.</au><au>Bates, Sarah H.</au><au>Pierroz, Dominique D.</au><au>Gu, Haihua</au><au>Neel, Benjamin G.</au><au>Myers, Martin G.</au><au>Flier, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2001-02-16</date><risdate>2001</risdate><volume>276</volume><issue>7</issue><spage>4747</spage><epage>4755</epage><pages>4747-4755</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11085989</pmid><doi>10.1074/jbc.M007439200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2001-02, Vol.276 (7), p.4747-4755
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_70864946
source ScienceDirect Journals
subjects Animals
Carrier Proteins - chemistry
Carrier Proteins - metabolism
CHO Cells
Cricetinae
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Early Growth Response Protein 1
Hypothalamus - metabolism
Immediate-Early Proteins
Intracellular Signaling Peptides and Proteins
Janus Kinase 2
Leptin - pharmacology
Male
MAP Kinase Signaling System
Mice
Mice, Inbred C57BL
Mitogen-Activated Protein Kinase 3
Mitogen-Activated Protein Kinases - metabolism
Models, Biological
Mutation
Phosphorylation
Promoter Regions, Genetic
Protein Tyrosine Phosphatase, Non-Receptor Type 11
Protein Tyrosine Phosphatase, Non-Receptor Type 6
Protein Tyrosine Phosphatases - genetics
Protein Tyrosine Phosphatases - physiology
Protein-Tyrosine Kinases - genetics
Protein-Tyrosine Kinases - physiology
Proto-Oncogene Proteins
Receptors, Cell Surface
Receptors, Leptin
RNA, Messenger - biosynthesis
STAT3 Transcription Factor
Trans-Activators - metabolism
Transcription Factors - biosynthesis
Transcription Factors - genetics
Transcription, Genetic
Transfection
title Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergent%20Roles%20of%20SHP-2%20in%20ERK%20Activation%20by%20Leptin%20Receptors&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bj%C3%B8rb%C3%A6k,%20Christian&rft.date=2001-02-16&rft.volume=276&rft.issue=7&rft.spage=4747&rft.epage=4755&rft.pages=4747-4755&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M007439200&rft_dat=%3Cproquest_cross%3E70864946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70864946&rft_id=info:pmid/11085989&rfr_iscdi=true