Loading…
Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors
The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant...
Saved in:
Published in: | The Journal of biological chemistry 2001-02, Vol.276 (7), p.4747-4755 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753 |
container_end_page | 4755 |
container_issue | 7 |
container_start_page | 4747 |
container_title | The Journal of biological chemistry |
container_volume | 276 |
creator | Bjørbæk, Christian Buchholz, Ryan M. Davis, Sarah M. Bates, Sarah H. Pierroz, Dominique D. Gu, Haihua Neel, Benjamin G. Myers, Martin G. Flier, Jeffrey S. |
description | The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation. |
doi_str_mv | 10.1074/jbc.M007439200 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70864946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818462710</els_id><sourcerecordid>70864946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWqtXj7J48LY12SSb5CKUWj-wolQFb2GTnbWRdlOTbcV_b6QFT85lBuZ5h-FB6ITgAcGCXXwYO3jAaaKqwHgH9QiWNKecvO2iHsYFyVXB5QE6jPEDp2KK7KMDkiiupOqhyyu3hvAObZdN_Rxi5pvs-fYpLzLXZuPpfTa0nVtXnfNtZr6zCSy7tJiCTYMP8QjtNdU8wvG299Hr9fhldJtPHm_uRsNJbhkWXV4zkKzhypoSU8OMtIoI1ihBScU5EFlSQxVlViaIMV5UVGJTVaIktOaC0z4639xdBv-5gtjphYsW5vOqBb-KWmBZMsXKBA42oA0-xgCNXga3qMK3Jlj_GtPJmP4zlgKn28srs4D6D98qSsDZBpi599mXC6CN83YGC12IUgvNBBMJkhsIkoS1g6CjddBaqFPAdrr27r8HfgBfOoIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70864946</pqid></control><display><type>article</type><title>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</title><source>ScienceDirect Journals</source><creator>Bjørbæk, Christian ; Buchholz, Ryan M. ; Davis, Sarah M. ; Bates, Sarah H. ; Pierroz, Dominique D. ; Gu, Haihua ; Neel, Benjamin G. ; Myers, Martin G. ; Flier, Jeffrey S.</creator><creatorcontrib>Bjørbæk, Christian ; Buchholz, Ryan M. ; Davis, Sarah M. ; Bates, Sarah H. ; Pierroz, Dominique D. ; Gu, Haihua ; Neel, Benjamin G. ; Myers, Martin G. ; Flier, Jeffrey S.</creatorcontrib><description>The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M007439200</identifier><identifier>PMID: 11085989</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Carrier Proteins - chemistry ; Carrier Proteins - metabolism ; CHO Cells ; Cricetinae ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Early Growth Response Protein 1 ; Hypothalamus - metabolism ; Immediate-Early Proteins ; Intracellular Signaling Peptides and Proteins ; Janus Kinase 2 ; Leptin - pharmacology ; Male ; MAP Kinase Signaling System ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases - metabolism ; Models, Biological ; Mutation ; Phosphorylation ; Promoter Regions, Genetic ; Protein Tyrosine Phosphatase, Non-Receptor Type 11 ; Protein Tyrosine Phosphatase, Non-Receptor Type 6 ; Protein Tyrosine Phosphatases - genetics ; Protein Tyrosine Phosphatases - physiology ; Protein-Tyrosine Kinases - genetics ; Protein-Tyrosine Kinases - physiology ; Proto-Oncogene Proteins ; Receptors, Cell Surface ; Receptors, Leptin ; RNA, Messenger - biosynthesis ; STAT3 Transcription Factor ; Trans-Activators - metabolism ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Transcription, Genetic ; Transfection</subject><ispartof>The Journal of biological chemistry, 2001-02, Vol.276 (7), p.4747-4755</ispartof><rights>2001 © 2001 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</citedby><cites>FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925818462710$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11085989$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bjørbæk, Christian</creatorcontrib><creatorcontrib>Buchholz, Ryan M.</creatorcontrib><creatorcontrib>Davis, Sarah M.</creatorcontrib><creatorcontrib>Bates, Sarah H.</creatorcontrib><creatorcontrib>Pierroz, Dominique D.</creatorcontrib><creatorcontrib>Gu, Haihua</creatorcontrib><creatorcontrib>Neel, Benjamin G.</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><creatorcontrib>Flier, Jeffrey S.</creatorcontrib><title>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.</description><subject>Animals</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - metabolism</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Early Growth Response Protein 1</subject><subject>Hypothalamus - metabolism</subject><subject>Immediate-Early Proteins</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Janus Kinase 2</subject><subject>Leptin - pharmacology</subject><subject>Male</subject><subject>MAP Kinase Signaling System</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 11</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 6</subject><subject>Protein Tyrosine Phosphatases - genetics</subject><subject>Protein Tyrosine Phosphatases - physiology</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - physiology</subject><subject>Proto-Oncogene Proteins</subject><subject>Receptors, Cell Surface</subject><subject>Receptors, Leptin</subject><subject>RNA, Messenger - biosynthesis</subject><subject>STAT3 Transcription Factor</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWqtXj7J48LY12SSb5CKUWj-wolQFb2GTnbWRdlOTbcV_b6QFT85lBuZ5h-FB6ITgAcGCXXwYO3jAaaKqwHgH9QiWNKecvO2iHsYFyVXB5QE6jPEDp2KK7KMDkiiupOqhyyu3hvAObZdN_Rxi5pvs-fYpLzLXZuPpfTa0nVtXnfNtZr6zCSy7tJiCTYMP8QjtNdU8wvG299Hr9fhldJtPHm_uRsNJbhkWXV4zkKzhypoSU8OMtIoI1ihBScU5EFlSQxVlViaIMV5UVGJTVaIktOaC0z4639xdBv-5gtjphYsW5vOqBb-KWmBZMsXKBA42oA0-xgCNXga3qMK3Jlj_GtPJmP4zlgKn28srs4D6D98qSsDZBpi599mXC6CN83YGC12IUgvNBBMJkhsIkoS1g6CjddBaqFPAdrr27r8HfgBfOoIM</recordid><startdate>20010216</startdate><enddate>20010216</enddate><creator>Bjørbæk, Christian</creator><creator>Buchholz, Ryan M.</creator><creator>Davis, Sarah M.</creator><creator>Bates, Sarah H.</creator><creator>Pierroz, Dominique D.</creator><creator>Gu, Haihua</creator><creator>Neel, Benjamin G.</creator><creator>Myers, Martin G.</creator><creator>Flier, Jeffrey S.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010216</creationdate><title>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</title><author>Bjørbæk, Christian ; Buchholz, Ryan M. ; Davis, Sarah M. ; Bates, Sarah H. ; Pierroz, Dominique D. ; Gu, Haihua ; Neel, Benjamin G. ; Myers, Martin G. ; Flier, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - metabolism</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Early Growth Response Protein 1</topic><topic>Hypothalamus - metabolism</topic><topic>Immediate-Early Proteins</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Janus Kinase 2</topic><topic>Leptin - pharmacology</topic><topic>Male</topic><topic>MAP Kinase Signaling System</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 11</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 6</topic><topic>Protein Tyrosine Phosphatases - genetics</topic><topic>Protein Tyrosine Phosphatases - physiology</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - physiology</topic><topic>Proto-Oncogene Proteins</topic><topic>Receptors, Cell Surface</topic><topic>Receptors, Leptin</topic><topic>RNA, Messenger - biosynthesis</topic><topic>STAT3 Transcription Factor</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjørbæk, Christian</creatorcontrib><creatorcontrib>Buchholz, Ryan M.</creatorcontrib><creatorcontrib>Davis, Sarah M.</creatorcontrib><creatorcontrib>Bates, Sarah H.</creatorcontrib><creatorcontrib>Pierroz, Dominique D.</creatorcontrib><creatorcontrib>Gu, Haihua</creatorcontrib><creatorcontrib>Neel, Benjamin G.</creatorcontrib><creatorcontrib>Myers, Martin G.</creatorcontrib><creatorcontrib>Flier, Jeffrey S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bjørbæk, Christian</au><au>Buchholz, Ryan M.</au><au>Davis, Sarah M.</au><au>Bates, Sarah H.</au><au>Pierroz, Dominique D.</au><au>Gu, Haihua</au><au>Neel, Benjamin G.</au><au>Myers, Martin G.</au><au>Flier, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2001-02-16</date><risdate>2001</risdate><volume>276</volume><issue>7</issue><spage>4747</spage><epage>4755</epage><pages>4747-4755</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependentegr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11085989</pmid><doi>10.1074/jbc.M007439200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2001-02, Vol.276 (7), p.4747-4755 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_70864946 |
source | ScienceDirect Journals |
subjects | Animals Carrier Proteins - chemistry Carrier Proteins - metabolism CHO Cells Cricetinae DNA-Binding Proteins - biosynthesis DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Early Growth Response Protein 1 Hypothalamus - metabolism Immediate-Early Proteins Intracellular Signaling Peptides and Proteins Janus Kinase 2 Leptin - pharmacology Male MAP Kinase Signaling System Mice Mice, Inbred C57BL Mitogen-Activated Protein Kinase 3 Mitogen-Activated Protein Kinases - metabolism Models, Biological Mutation Phosphorylation Promoter Regions, Genetic Protein Tyrosine Phosphatase, Non-Receptor Type 11 Protein Tyrosine Phosphatase, Non-Receptor Type 6 Protein Tyrosine Phosphatases - genetics Protein Tyrosine Phosphatases - physiology Protein-Tyrosine Kinases - genetics Protein-Tyrosine Kinases - physiology Proto-Oncogene Proteins Receptors, Cell Surface Receptors, Leptin RNA, Messenger - biosynthesis STAT3 Transcription Factor Trans-Activators - metabolism Transcription Factors - biosynthesis Transcription Factors - genetics Transcription, Genetic Transfection |
title | Divergent Roles of SHP-2 in ERK Activation by Leptin Receptors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergent%20Roles%20of%20SHP-2%20in%20ERK%20Activation%20by%20Leptin%20Receptors&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bj%C3%B8rb%C3%A6k,%20Christian&rft.date=2001-02-16&rft.volume=276&rft.issue=7&rft.spage=4747&rft.epage=4755&rft.pages=4747-4755&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M007439200&rft_dat=%3Cproquest_cross%3E70864946%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-d4e84f59cb603b4b8c9174f9731a55e1863b3934c8f594452a380baa7613d5753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70864946&rft_id=info:pmid/11085989&rfr_iscdi=true |