Loading…

Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes

Chitosan is a copolymer of β(1→4) glucosamine and N-acetyl- d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positi...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2001-06, Vol.22 (12), p.1667-1673
Main Authors: Ueno, Hiroshi, Murakami, Masaaki, Okumura, Masahiro, Kadosawa, Tsuyoshi, Uede, Toshimitsu, Fujinaga, Toru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973
cites cdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973
container_end_page 1673
container_issue 12
container_start_page 1667
container_title Biomaterials
container_volume 22
creator Ueno, Hiroshi
Murakami, Masaaki
Okumura, Masahiro
Kadosawa, Tsuyoshi
Uede, Toshimitsu
Fujinaga, Toru
description Chitosan is a copolymer of β(1→4) glucosamine and N-acetyl- d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing.
doi_str_mv 10.1016/S0142-9612(00)00328-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70871250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961200003288</els_id><sourcerecordid>26644926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</originalsourceid><addsrcrecordid>eNqFkF1rFDEUhoModlv9CcqAIPVi6kkmySRXRRa1hYIXrdchkzlhozOTMckI---d7S71sleHA897Ph5C3lG4okDl53ugnNVaUnYJ8AmgYapWL8iGqlbVQoN4STZPyBk5z_kXrD1w9pqcUdq0nEu9IQ_bXSgx26myzuGAyRbMVdlhNafYL66EOFXRVzEXjHOcSpgqn-JYzXHYjzHNuzgtbkCbqgGX39Ht1_wb8srbIePbU70gP799fdje1Hc_vt9uv9zVjitZakcldI3sNHTWiV52jGnPRSe9YgJtRz1lPbIWGkE9aq0F7SUHoXpmpdRtc0E-Hueut_5ZMBczhrx-MdgJ45JNC6qlTMCzIJOSc83kCooj6FLMOaE3cwqjTXtDwRy8m0fv5iDVAJhH70atufenBUs3Yv8_dRK9Ah9OgM3ODj7ZyYX8xGnR0uZAXR8pXK39DZhMdgEnh31I6IrpY3jmkH8BDp-p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26644926</pqid></control><display><type>article</type><title>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ueno, Hiroshi ; Murakami, Masaaki ; Okumura, Masahiro ; Kadosawa, Tsuyoshi ; Uede, Toshimitsu ; Fujinaga, Toru</creator><creatorcontrib>Ueno, Hiroshi ; Murakami, Masaaki ; Okumura, Masahiro ; Kadosawa, Tsuyoshi ; Uede, Toshimitsu ; Fujinaga, Toru</creatorcontrib><description>Chitosan is a copolymer of β(1→4) glucosamine and N-acetyl- d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(00)00328-8</identifier><identifier>PMID: 11374469</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Chitin - analogs &amp; derivatives ; Chitin - pharmacology ; Chitosan ; Dogs ; Gene Expression Regulation - drug effects ; Humans ; In Vitro Techniques ; Kinetics ; Medical sciences ; Neutrophils - drug effects ; Neutrophils - physiology ; Osteopontin ; Phosphoproteins - blood ; Phosphoproteins - genetics ; Polymorphonuclear leukocyte ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - blood ; RNA, Messenger - genetics ; Sialoglycoproteins - blood ; Sialoglycoproteins - genetics ; Skin - drug effects ; Skin - physiopathology ; Skin Physiological Phenomena - drug effects ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Time Factors ; Transcription, Genetic - drug effects ; Wound healing ; Wound Healing - drug effects ; Wound Healing - physiology</subject><ispartof>Biomaterials, 2001-06, Vol.22 (12), p.1667-1673</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</citedby><cites>FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=957139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11374469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Okumura, Masahiro</creatorcontrib><creatorcontrib>Kadosawa, Tsuyoshi</creatorcontrib><creatorcontrib>Uede, Toshimitsu</creatorcontrib><creatorcontrib>Fujinaga, Toru</creatorcontrib><title>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Chitosan is a copolymer of β(1→4) glucosamine and N-acetyl- d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Chitin - analogs &amp; derivatives</subject><subject>Chitin - pharmacology</subject><subject>Chitosan</subject><subject>Dogs</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Medical sciences</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - physiology</subject><subject>Osteopontin</subject><subject>Phosphoproteins - blood</subject><subject>Phosphoproteins - genetics</subject><subject>Polymorphonuclear leukocyte</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - blood</subject><subject>RNA, Messenger - genetics</subject><subject>Sialoglycoproteins - blood</subject><subject>Sialoglycoproteins - genetics</subject><subject>Skin - drug effects</subject><subject>Skin - physiopathology</subject><subject>Skin Physiological Phenomena - drug effects</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Time Factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Wound healing</subject><subject>Wound Healing - drug effects</subject><subject>Wound Healing - physiology</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkF1rFDEUhoModlv9CcqAIPVi6kkmySRXRRa1hYIXrdchkzlhozOTMckI---d7S71sleHA897Ph5C3lG4okDl53ugnNVaUnYJ8AmgYapWL8iGqlbVQoN4STZPyBk5z_kXrD1w9pqcUdq0nEu9IQ_bXSgx26myzuGAyRbMVdlhNafYL66EOFXRVzEXjHOcSpgqn-JYzXHYjzHNuzgtbkCbqgGX39Ht1_wb8srbIePbU70gP799fdje1Hc_vt9uv9zVjitZakcldI3sNHTWiV52jGnPRSe9YgJtRz1lPbIWGkE9aq0F7SUHoXpmpdRtc0E-Hueut_5ZMBczhrx-MdgJ45JNC6qlTMCzIJOSc83kCooj6FLMOaE3cwqjTXtDwRy8m0fv5iDVAJhH70atufenBUs3Yv8_dRK9Ah9OgM3ODj7ZyYX8xGnR0uZAXR8pXK39DZhMdgEnh31I6IrpY3jmkH8BDp-p</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Ueno, Hiroshi</creator><creator>Murakami, Masaaki</creator><creator>Okumura, Masahiro</creator><creator>Kadosawa, Tsuyoshi</creator><creator>Uede, Toshimitsu</creator><creator>Fujinaga, Toru</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</title><author>Ueno, Hiroshi ; Murakami, Masaaki ; Okumura, Masahiro ; Kadosawa, Tsuyoshi ; Uede, Toshimitsu ; Fujinaga, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Chitin - analogs &amp; derivatives</topic><topic>Chitin - pharmacology</topic><topic>Chitosan</topic><topic>Dogs</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Medical sciences</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - physiology</topic><topic>Osteopontin</topic><topic>Phosphoproteins - blood</topic><topic>Phosphoproteins - genetics</topic><topic>Polymorphonuclear leukocyte</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - blood</topic><topic>RNA, Messenger - genetics</topic><topic>Sialoglycoproteins - blood</topic><topic>Sialoglycoproteins - genetics</topic><topic>Skin - drug effects</topic><topic>Skin - physiopathology</topic><topic>Skin Physiological Phenomena - drug effects</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Time Factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Wound healing</topic><topic>Wound Healing - drug effects</topic><topic>Wound Healing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Okumura, Masahiro</creatorcontrib><creatorcontrib>Kadosawa, Tsuyoshi</creatorcontrib><creatorcontrib>Uede, Toshimitsu</creatorcontrib><creatorcontrib>Fujinaga, Toru</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueno, Hiroshi</au><au>Murakami, Masaaki</au><au>Okumura, Masahiro</au><au>Kadosawa, Tsuyoshi</au><au>Uede, Toshimitsu</au><au>Fujinaga, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>22</volume><issue>12</issue><spage>1667</spage><epage>1673</epage><pages>1667-1673</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Chitosan is a copolymer of β(1→4) glucosamine and N-acetyl- d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11374469</pmid><doi>10.1016/S0142-9612(00)00328-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2001-06, Vol.22 (12), p.1667-1673
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_70871250
source ScienceDirect Freedom Collection 2022-2024
subjects Animals
Biological and medical sciences
Chitin - analogs & derivatives
Chitin - pharmacology
Chitosan
Dogs
Gene Expression Regulation - drug effects
Humans
In Vitro Techniques
Kinetics
Medical sciences
Neutrophils - drug effects
Neutrophils - physiology
Osteopontin
Phosphoproteins - blood
Phosphoproteins - genetics
Polymorphonuclear leukocyte
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - blood
RNA, Messenger - genetics
Sialoglycoproteins - blood
Sialoglycoproteins - genetics
Skin - drug effects
Skin - physiopathology
Skin Physiological Phenomena - drug effects
Technology. Biomaterials. Equipments. Material. Instrumentation
Time Factors
Transcription, Genetic - drug effects
Wound healing
Wound Healing - drug effects
Wound Healing - physiology
title Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan%20accelerates%20the%20production%20of%20osteopontin%20from%20polymorphonuclear%20leukocytes&rft.jtitle=Biomaterials&rft.au=Ueno,%20Hiroshi&rft.date=2001-06-01&rft.volume=22&rft.issue=12&rft.spage=1667&rft.epage=1673&rft.pages=1667-1673&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(00)00328-8&rft_dat=%3Cproquest_cross%3E26644926%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26644926&rft_id=info:pmid/11374469&rfr_iscdi=true