Loading…
Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes
Chitosan is a copolymer of β(1→4) glucosamine and N-acetyl- d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positi...
Saved in:
Published in: | Biomaterials 2001-06, Vol.22 (12), p.1667-1673 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973 |
---|---|
cites | cdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973 |
container_end_page | 1673 |
container_issue | 12 |
container_start_page | 1667 |
container_title | Biomaterials |
container_volume | 22 |
creator | Ueno, Hiroshi Murakami, Masaaki Okumura, Masahiro Kadosawa, Tsuyoshi Uede, Toshimitsu Fujinaga, Toru |
description | Chitosan is a copolymer of
β(1→4) glucosamine and
N-acetyl-
d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing. |
doi_str_mv | 10.1016/S0142-9612(00)00328-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70871250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961200003288</els_id><sourcerecordid>26644926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</originalsourceid><addsrcrecordid>eNqFkF1rFDEUhoModlv9CcqAIPVi6kkmySRXRRa1hYIXrdchkzlhozOTMckI---d7S71sleHA897Ph5C3lG4okDl53ugnNVaUnYJ8AmgYapWL8iGqlbVQoN4STZPyBk5z_kXrD1w9pqcUdq0nEu9IQ_bXSgx26myzuGAyRbMVdlhNafYL66EOFXRVzEXjHOcSpgqn-JYzXHYjzHNuzgtbkCbqgGX39Ht1_wb8srbIePbU70gP799fdje1Hc_vt9uv9zVjitZakcldI3sNHTWiV52jGnPRSe9YgJtRz1lPbIWGkE9aq0F7SUHoXpmpdRtc0E-Hueut_5ZMBczhrx-MdgJ45JNC6qlTMCzIJOSc83kCooj6FLMOaE3cwqjTXtDwRy8m0fv5iDVAJhH70atufenBUs3Yv8_dRK9Ah9OgM3ODj7ZyYX8xGnR0uZAXR8pXK39DZhMdgEnh31I6IrpY3jmkH8BDp-p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26644926</pqid></control><display><type>article</type><title>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Ueno, Hiroshi ; Murakami, Masaaki ; Okumura, Masahiro ; Kadosawa, Tsuyoshi ; Uede, Toshimitsu ; Fujinaga, Toru</creator><creatorcontrib>Ueno, Hiroshi ; Murakami, Masaaki ; Okumura, Masahiro ; Kadosawa, Tsuyoshi ; Uede, Toshimitsu ; Fujinaga, Toru</creatorcontrib><description>Chitosan is a copolymer of
β(1→4) glucosamine and
N-acetyl-
d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(00)00328-8</identifier><identifier>PMID: 11374469</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Chitin - analogs & derivatives ; Chitin - pharmacology ; Chitosan ; Dogs ; Gene Expression Regulation - drug effects ; Humans ; In Vitro Techniques ; Kinetics ; Medical sciences ; Neutrophils - drug effects ; Neutrophils - physiology ; Osteopontin ; Phosphoproteins - blood ; Phosphoproteins - genetics ; Polymorphonuclear leukocyte ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - blood ; RNA, Messenger - genetics ; Sialoglycoproteins - blood ; Sialoglycoproteins - genetics ; Skin - drug effects ; Skin - physiopathology ; Skin Physiological Phenomena - drug effects ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Time Factors ; Transcription, Genetic - drug effects ; Wound healing ; Wound Healing - drug effects ; Wound Healing - physiology</subject><ispartof>Biomaterials, 2001-06, Vol.22 (12), p.1667-1673</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</citedby><cites>FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=957139$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11374469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Okumura, Masahiro</creatorcontrib><creatorcontrib>Kadosawa, Tsuyoshi</creatorcontrib><creatorcontrib>Uede, Toshimitsu</creatorcontrib><creatorcontrib>Fujinaga, Toru</creatorcontrib><title>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Chitosan is a copolymer of
β(1→4) glucosamine and
N-acetyl-
d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Chitin - analogs & derivatives</subject><subject>Chitin - pharmacology</subject><subject>Chitosan</subject><subject>Dogs</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Medical sciences</subject><subject>Neutrophils - drug effects</subject><subject>Neutrophils - physiology</subject><subject>Osteopontin</subject><subject>Phosphoproteins - blood</subject><subject>Phosphoproteins - genetics</subject><subject>Polymorphonuclear leukocyte</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - blood</subject><subject>RNA, Messenger - genetics</subject><subject>Sialoglycoproteins - blood</subject><subject>Sialoglycoproteins - genetics</subject><subject>Skin - drug effects</subject><subject>Skin - physiopathology</subject><subject>Skin Physiological Phenomena - drug effects</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Time Factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Wound healing</subject><subject>Wound Healing - drug effects</subject><subject>Wound Healing - physiology</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkF1rFDEUhoModlv9CcqAIPVi6kkmySRXRRa1hYIXrdchkzlhozOTMckI---d7S71sleHA897Ph5C3lG4okDl53ugnNVaUnYJ8AmgYapWL8iGqlbVQoN4STZPyBk5z_kXrD1w9pqcUdq0nEu9IQ_bXSgx26myzuGAyRbMVdlhNafYL66EOFXRVzEXjHOcSpgqn-JYzXHYjzHNuzgtbkCbqgGX39Ht1_wb8srbIePbU70gP799fdje1Hc_vt9uv9zVjitZakcldI3sNHTWiV52jGnPRSe9YgJtRz1lPbIWGkE9aq0F7SUHoXpmpdRtc0E-Hueut_5ZMBczhrx-MdgJ45JNC6qlTMCzIJOSc83kCooj6FLMOaE3cwqjTXtDwRy8m0fv5iDVAJhH70atufenBUs3Yv8_dRK9Ah9OgM3ODj7ZyYX8xGnR0uZAXR8pXK39DZhMdgEnh31I6IrpY3jmkH8BDp-p</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Ueno, Hiroshi</creator><creator>Murakami, Masaaki</creator><creator>Okumura, Masahiro</creator><creator>Kadosawa, Tsuyoshi</creator><creator>Uede, Toshimitsu</creator><creator>Fujinaga, Toru</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</title><author>Ueno, Hiroshi ; Murakami, Masaaki ; Okumura, Masahiro ; Kadosawa, Tsuyoshi ; Uede, Toshimitsu ; Fujinaga, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Chitin - analogs & derivatives</topic><topic>Chitin - pharmacology</topic><topic>Chitosan</topic><topic>Dogs</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Medical sciences</topic><topic>Neutrophils - drug effects</topic><topic>Neutrophils - physiology</topic><topic>Osteopontin</topic><topic>Phosphoproteins - blood</topic><topic>Phosphoproteins - genetics</topic><topic>Polymorphonuclear leukocyte</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - blood</topic><topic>RNA, Messenger - genetics</topic><topic>Sialoglycoproteins - blood</topic><topic>Sialoglycoproteins - genetics</topic><topic>Skin - drug effects</topic><topic>Skin - physiopathology</topic><topic>Skin Physiological Phenomena - drug effects</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Time Factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Wound healing</topic><topic>Wound Healing - drug effects</topic><topic>Wound Healing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Murakami, Masaaki</creatorcontrib><creatorcontrib>Okumura, Masahiro</creatorcontrib><creatorcontrib>Kadosawa, Tsuyoshi</creatorcontrib><creatorcontrib>Uede, Toshimitsu</creatorcontrib><creatorcontrib>Fujinaga, Toru</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueno, Hiroshi</au><au>Murakami, Masaaki</au><au>Okumura, Masahiro</au><au>Kadosawa, Tsuyoshi</au><au>Uede, Toshimitsu</au><au>Fujinaga, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>22</volume><issue>12</issue><spage>1667</spage><epage>1673</epage><pages>1667-1673</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Chitosan is a copolymer of
β(1→4) glucosamine and
N-acetyl-
d-glucosamine, which accelerates the infiltration of polymorphonuclear leukocytes (PMN) in the early phase of wound healing. In the granulation tissue treated with chitosan in canine experimental wound, osteopontin (OPN) was strongly positive in PMN immunohistochemically. OPN is a glycosylated phosphoprotein and promotes the attachment or spread of a variety of cell types. In addition, OPN may play a role in granulomatous inflammation. Production of OPN in PMN was therefore investigated in vitro using human PMN in this study. PMN stimulated with granulocyte-colony stimulating factor (G-CSF) and chitosan accumulated OPN mRNA, and released OPN into their culture supernatants. These findings suggest that OPN is synthesized by migrating PMN which plays the novel role of regulating the evolution of wound healing with chitosan treatment at the early phase of healing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11374469</pmid><doi>10.1016/S0142-9612(00)00328-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2001-06, Vol.22 (12), p.1667-1673 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_70871250 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Animals Biological and medical sciences Chitin - analogs & derivatives Chitin - pharmacology Chitosan Dogs Gene Expression Regulation - drug effects Humans In Vitro Techniques Kinetics Medical sciences Neutrophils - drug effects Neutrophils - physiology Osteopontin Phosphoproteins - blood Phosphoproteins - genetics Polymorphonuclear leukocyte Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - blood RNA, Messenger - genetics Sialoglycoproteins - blood Sialoglycoproteins - genetics Skin - drug effects Skin - physiopathology Skin Physiological Phenomena - drug effects Technology. Biomaterials. Equipments. Material. Instrumentation Time Factors Transcription, Genetic - drug effects Wound healing Wound Healing - drug effects Wound Healing - physiology |
title | Chitosan accelerates the production of osteopontin from polymorphonuclear leukocytes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan%20accelerates%20the%20production%20of%20osteopontin%20from%20polymorphonuclear%20leukocytes&rft.jtitle=Biomaterials&rft.au=Ueno,%20Hiroshi&rft.date=2001-06-01&rft.volume=22&rft.issue=12&rft.spage=1667&rft.epage=1673&rft.pages=1667-1673&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(00)00328-8&rft_dat=%3Cproquest_cross%3E26644926%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-c160b36b90bac5d6b229f45b6f825eab1f12de270351fe99951d64058d2a66973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26644926&rft_id=info:pmid/11374469&rfr_iscdi=true |