Loading…

Quantification of the surface density of a fluorescent label with the optical microscope

Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the poten...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research 2000-04, Vol.50 (1), p.90-96
Main Authors: Model, Michael A., Healy, Kevin E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93
container_end_page 96
container_issue 1
container_start_page 90
container_title Journal of biomedical materials research
container_volume 50
creator Model, Michael A.
Healy, Kevin E.
description Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley & Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000.
doi_str_mv 10.1002/(SICI)1097-4636(200004)50:1<90::AID-JBM13>3.0.CO;2-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70877730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>540870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93</originalsourceid><addsrcrecordid>eNqFkVFv0zAUhSMEYmXwF1AeENoeUuzYseMyIW0B1rJBhRgab1euc615pEkXJxr99zhLNZBA4BdL9rnfPfeeKDqiZEoJSV8dfFkUi0NKlEy4YOIgJeHww4zM6JEis9nx4m3y4eQjZW_YlEyL5es0YQ-iyX3Bw2gSMDRRjPC96In316FeKUYfR3uUCM6VyCfRt8-9rjtnndGda-q4sXF3hbHvW6sNxiXW3nXb4VnHtuqbFr3BuosrvcIqvnXd1Z2-2XSBUMVrZ9rGm2aDT6NHVlcen-3u_ejr-3cXxTw5X54uiuPzxHBBWIJIteSK50i4LaXVlq7YSokVGkuMJKkqS0Y5N5IzSlCwEmUosIbnzGRGsf3o5cjdtM1Nj76DtQsWq0rX2PQeJMmllIz8V5iGLinLRRBejMJhFN-ihU3r1rrdAiUwRAMwRAPDpmHYNIzRQBa-QRGAEA3cRQMMCBRLSIEF7PNd_361xvI36JhFELzYCbQPu7Stro3zv3RpxoQYBt4t8tZVuP3D27-t_c3Z-BC4ych1vsMf91zdfgchmczg8tNp4JydiXw-h0v2E0hWxI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21442386</pqid></control><display><type>article</type><title>Quantification of the surface density of a fluorescent label with the optical microscope</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Model, Michael A. ; Healy, Kevin E.</creator><creatorcontrib>Model, Michael A. ; Healy, Kevin E.</creatorcontrib><description>Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley &amp; Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000.</description><identifier>ISSN: 0021-9304</identifier><identifier>EISSN: 1097-4636</identifier><identifier>DOI: 10.1002/(SICI)1097-4636(200004)50:1&lt;90::AID-JBM13&gt;3.0.CO;2-3</identifier><identifier>PMID: 10644968</identifier><identifier>CODEN: JBMRBG</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; Agglomeration ; Biocompatible Materials ; Biological and medical sciences ; calibration ; Cells ; Density (specific gravity) ; Erythrocyte Membrane - ultrastructure ; Erythrocytes - cytology ; Fibrinogen - chemistry ; Flow Cytometry - methods ; Fluorescein ; Fluorescence ; fluorescence microscopy ; Fluorescent Dyes ; Glass ; Humans ; Image analysis ; Immunoglobulin G - chemistry ; Medical sciences ; Microscopy, Fluorescence - methods ; Optical microscopy ; protein adsorption ; Proteins ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Reproducibility of Results ; shading correction ; surface density ; Technology. Biomaterials. Equipments. Material. Instrumentation</subject><ispartof>Journal of biomedical materials research, 2000-04, Vol.50 (1), p.90-96</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley &amp; Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1253669$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10644968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Model, Michael A.</creatorcontrib><creatorcontrib>Healy, Kevin E.</creatorcontrib><title>Quantification of the surface density of a fluorescent label with the optical microscope</title><title>Journal of biomedical materials research</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley &amp; Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000.</description><subject>Adsorption</subject><subject>Agglomeration</subject><subject>Biocompatible Materials</subject><subject>Biological and medical sciences</subject><subject>calibration</subject><subject>Cells</subject><subject>Density (specific gravity)</subject><subject>Erythrocyte Membrane - ultrastructure</subject><subject>Erythrocytes - cytology</subject><subject>Fibrinogen - chemistry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescein</subject><subject>Fluorescence</subject><subject>fluorescence microscopy</subject><subject>Fluorescent Dyes</subject><subject>Glass</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Immunoglobulin G - chemistry</subject><subject>Medical sciences</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Optical microscopy</subject><subject>protein adsorption</subject><subject>Proteins</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Reproducibility of Results</subject><subject>shading correction</subject><subject>surface density</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><issn>0021-9304</issn><issn>1097-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkVFv0zAUhSMEYmXwF1AeENoeUuzYseMyIW0B1rJBhRgab1euc615pEkXJxr99zhLNZBA4BdL9rnfPfeeKDqiZEoJSV8dfFkUi0NKlEy4YOIgJeHww4zM6JEis9nx4m3y4eQjZW_YlEyL5es0YQ-iyX3Bw2gSMDRRjPC96In316FeKUYfR3uUCM6VyCfRt8-9rjtnndGda-q4sXF3hbHvW6sNxiXW3nXb4VnHtuqbFr3BuosrvcIqvnXd1Z2-2XSBUMVrZ9rGm2aDT6NHVlcen-3u_ejr-3cXxTw5X54uiuPzxHBBWIJIteSK50i4LaXVlq7YSokVGkuMJKkqS0Y5N5IzSlCwEmUosIbnzGRGsf3o5cjdtM1Nj76DtQsWq0rX2PQeJMmllIz8V5iGLinLRRBejMJhFN-ihU3r1rrdAiUwRAMwRAPDpmHYNIzRQBa-QRGAEA3cRQMMCBRLSIEF7PNd_361xvI36JhFELzYCbQPu7Stro3zv3RpxoQYBt4t8tZVuP3D27-t_c3Z-BC4ych1vsMf91zdfgchmczg8tNp4JydiXw-h0v2E0hWxI4</recordid><startdate>200004</startdate><enddate>200004</enddate><creator>Model, Michael A.</creator><creator>Healy, Kevin E.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200004</creationdate><title>Quantification of the surface density of a fluorescent label with the optical microscope</title><author>Model, Michael A. ; Healy, Kevin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adsorption</topic><topic>Agglomeration</topic><topic>Biocompatible Materials</topic><topic>Biological and medical sciences</topic><topic>calibration</topic><topic>Cells</topic><topic>Density (specific gravity)</topic><topic>Erythrocyte Membrane - ultrastructure</topic><topic>Erythrocytes - cytology</topic><topic>Fibrinogen - chemistry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescein</topic><topic>Fluorescence</topic><topic>fluorescence microscopy</topic><topic>Fluorescent Dyes</topic><topic>Glass</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Immunoglobulin G - chemistry</topic><topic>Medical sciences</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Optical microscopy</topic><topic>protein adsorption</topic><topic>Proteins</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Reproducibility of Results</topic><topic>shading correction</topic><topic>surface density</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Model, Michael A.</creatorcontrib><creatorcontrib>Healy, Kevin E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Model, Michael A.</au><au>Healy, Kevin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of the surface density of a fluorescent label with the optical microscope</atitle><jtitle>Journal of biomedical materials research</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2000-04</date><risdate>2000</risdate><volume>50</volume><issue>1</issue><spage>90</spage><epage>96</epage><pages>90-96</pages><issn>0021-9304</issn><eissn>1097-4636</eissn><coden>JBMRBG</coden><abstract>Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley &amp; Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10644968</pmid><doi>10.1002/(SICI)1097-4636(200004)50:1&lt;90::AID-JBM13&gt;3.0.CO;2-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9304
ispartof Journal of biomedical materials research, 2000-04, Vol.50 (1), p.90-96
issn 0021-9304
1097-4636
language eng
recordid cdi_proquest_miscellaneous_70877730
source Wiley-Blackwell Read & Publish Collection
subjects Adsorption
Agglomeration
Biocompatible Materials
Biological and medical sciences
calibration
Cells
Density (specific gravity)
Erythrocyte Membrane - ultrastructure
Erythrocytes - cytology
Fibrinogen - chemistry
Flow Cytometry - methods
Fluorescein
Fluorescence
fluorescence microscopy
Fluorescent Dyes
Glass
Humans
Image analysis
Immunoglobulin G - chemistry
Medical sciences
Microscopy, Fluorescence - methods
Optical microscopy
protein adsorption
Proteins
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Reproducibility of Results
shading correction
surface density
Technology. Biomaterials. Equipments. Material. Instrumentation
title Quantification of the surface density of a fluorescent label with the optical microscope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20the%20surface%20density%20of%20a%20fluorescent%20label%20with%20the%20optical%20microscope&rft.jtitle=Journal%20of%20biomedical%20materials%20research&rft.au=Model,%20Michael%20A.&rft.date=2000-04&rft.volume=50&rft.issue=1&rft.spage=90&rft.epage=96&rft.pages=90-96&rft.issn=0021-9304&rft.eissn=1097-4636&rft.coden=JBMRBG&rft_id=info:doi/10.1002/(SICI)1097-4636(200004)50:1%3C90::AID-JBM13%3E3.0.CO;2-3&rft_dat=%3Cproquest_cross%3E540870%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21442386&rft_id=info:pmid/10644968&rfr_iscdi=true