Loading…
Quantification of the surface density of a fluorescent label with the optical microscope
Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the poten...
Saved in:
Published in: | Journal of biomedical materials research 2000-04, Vol.50 (1), p.90-96 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93 |
container_end_page | 96 |
container_issue | 1 |
container_start_page | 90 |
container_title | Journal of biomedical materials research |
container_volume | 50 |
creator | Model, Michael A. Healy, Kevin E. |
description | Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley & Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000. |
doi_str_mv | 10.1002/(SICI)1097-4636(200004)50:1<90::AID-JBM13>3.0.CO;2-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70877730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>540870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93</originalsourceid><addsrcrecordid>eNqFkVFv0zAUhSMEYmXwF1AeENoeUuzYseMyIW0B1rJBhRgab1euc615pEkXJxr99zhLNZBA4BdL9rnfPfeeKDqiZEoJSV8dfFkUi0NKlEy4YOIgJeHww4zM6JEis9nx4m3y4eQjZW_YlEyL5es0YQ-iyX3Bw2gSMDRRjPC96In316FeKUYfR3uUCM6VyCfRt8-9rjtnndGda-q4sXF3hbHvW6sNxiXW3nXb4VnHtuqbFr3BuosrvcIqvnXd1Z2-2XSBUMVrZ9rGm2aDT6NHVlcen-3u_ejr-3cXxTw5X54uiuPzxHBBWIJIteSK50i4LaXVlq7YSokVGkuMJKkqS0Y5N5IzSlCwEmUosIbnzGRGsf3o5cjdtM1Nj76DtQsWq0rX2PQeJMmllIz8V5iGLinLRRBejMJhFN-ihU3r1rrdAiUwRAMwRAPDpmHYNIzRQBa-QRGAEA3cRQMMCBRLSIEF7PNd_361xvI36JhFELzYCbQPu7Stro3zv3RpxoQYBt4t8tZVuP3D27-t_c3Z-BC4ych1vsMf91zdfgchmczg8tNp4JydiXw-h0v2E0hWxI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21442386</pqid></control><display><type>article</type><title>Quantification of the surface density of a fluorescent label with the optical microscope</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Model, Michael A. ; Healy, Kevin E.</creator><creatorcontrib>Model, Michael A. ; Healy, Kevin E.</creatorcontrib><description>Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley & Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000.</description><identifier>ISSN: 0021-9304</identifier><identifier>EISSN: 1097-4636</identifier><identifier>DOI: 10.1002/(SICI)1097-4636(200004)50:1<90::AID-JBM13>3.0.CO;2-3</identifier><identifier>PMID: 10644968</identifier><identifier>CODEN: JBMRBG</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Adsorption ; Agglomeration ; Biocompatible Materials ; Biological and medical sciences ; calibration ; Cells ; Density (specific gravity) ; Erythrocyte Membrane - ultrastructure ; Erythrocytes - cytology ; Fibrinogen - chemistry ; Flow Cytometry - methods ; Fluorescein ; Fluorescence ; fluorescence microscopy ; Fluorescent Dyes ; Glass ; Humans ; Image analysis ; Immunoglobulin G - chemistry ; Medical sciences ; Microscopy, Fluorescence - methods ; Optical microscopy ; protein adsorption ; Proteins ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Reproducibility of Results ; shading correction ; surface density ; Technology. Biomaterials. Equipments. Material. Instrumentation</subject><ispartof>Journal of biomedical materials research, 2000-04, Vol.50 (1), p.90-96</ispartof><rights>Copyright © 2000 John Wiley & Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley & Sons, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1253669$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10644968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Model, Michael A.</creatorcontrib><creatorcontrib>Healy, Kevin E.</creatorcontrib><title>Quantification of the surface density of a fluorescent label with the optical microscope</title><title>Journal of biomedical materials research</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley & Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000.</description><subject>Adsorption</subject><subject>Agglomeration</subject><subject>Biocompatible Materials</subject><subject>Biological and medical sciences</subject><subject>calibration</subject><subject>Cells</subject><subject>Density (specific gravity)</subject><subject>Erythrocyte Membrane - ultrastructure</subject><subject>Erythrocytes - cytology</subject><subject>Fibrinogen - chemistry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescein</subject><subject>Fluorescence</subject><subject>fluorescence microscopy</subject><subject>Fluorescent Dyes</subject><subject>Glass</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Immunoglobulin G - chemistry</subject><subject>Medical sciences</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Optical microscopy</subject><subject>protein adsorption</subject><subject>Proteins</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Reproducibility of Results</subject><subject>shading correction</subject><subject>surface density</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><issn>0021-9304</issn><issn>1097-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkVFv0zAUhSMEYmXwF1AeENoeUuzYseMyIW0B1rJBhRgab1euc615pEkXJxr99zhLNZBA4BdL9rnfPfeeKDqiZEoJSV8dfFkUi0NKlEy4YOIgJeHww4zM6JEis9nx4m3y4eQjZW_YlEyL5es0YQ-iyX3Bw2gSMDRRjPC96In316FeKUYfR3uUCM6VyCfRt8-9rjtnndGda-q4sXF3hbHvW6sNxiXW3nXb4VnHtuqbFr3BuosrvcIqvnXd1Z2-2XSBUMVrZ9rGm2aDT6NHVlcen-3u_ejr-3cXxTw5X54uiuPzxHBBWIJIteSK50i4LaXVlq7YSokVGkuMJKkqS0Y5N5IzSlCwEmUosIbnzGRGsf3o5cjdtM1Nj76DtQsWq0rX2PQeJMmllIz8V5iGLinLRRBejMJhFN-ihU3r1rrdAiUwRAMwRAPDpmHYNIzRQBa-QRGAEA3cRQMMCBRLSIEF7PNd_361xvI36JhFELzYCbQPu7Stro3zv3RpxoQYBt4t8tZVuP3D27-t_c3Z-BC4ych1vsMf91zdfgchmczg8tNp4JydiXw-h0v2E0hWxI4</recordid><startdate>200004</startdate><enddate>200004</enddate><creator>Model, Michael A.</creator><creator>Healy, Kevin E.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley & Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200004</creationdate><title>Quantification of the surface density of a fluorescent label with the optical microscope</title><author>Model, Michael A. ; Healy, Kevin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adsorption</topic><topic>Agglomeration</topic><topic>Biocompatible Materials</topic><topic>Biological and medical sciences</topic><topic>calibration</topic><topic>Cells</topic><topic>Density (specific gravity)</topic><topic>Erythrocyte Membrane - ultrastructure</topic><topic>Erythrocytes - cytology</topic><topic>Fibrinogen - chemistry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescein</topic><topic>Fluorescence</topic><topic>fluorescence microscopy</topic><topic>Fluorescent Dyes</topic><topic>Glass</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Immunoglobulin G - chemistry</topic><topic>Medical sciences</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Optical microscopy</topic><topic>protein adsorption</topic><topic>Proteins</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Reproducibility of Results</topic><topic>shading correction</topic><topic>surface density</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Model, Michael A.</creatorcontrib><creatorcontrib>Healy, Kevin E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Model, Michael A.</au><au>Healy, Kevin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of the surface density of a fluorescent label with the optical microscope</atitle><jtitle>Journal of biomedical materials research</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2000-04</date><risdate>2000</risdate><volume>50</volume><issue>1</issue><spage>90</spage><epage>96</epage><pages>90-96</pages><issn>0021-9304</issn><eissn>1097-4636</eissn><coden>JBMRBG</coden><abstract>Fluorescence microscopy can offer unique advantages for biomaterials characterization. Like spectroscopy or radioactivity, it can be used to quantify specific binding to surfaces, but it can also assess surface homogeneity at the micron scale or detect protein aggregation. To fully utilize the potential of this technique, there must be a way to calibrate the microscope in terms of the moles of a fluorophore per unit area. The method we propose involves the following steps: fluorescent labeling of erythrocytes and quantification of the label by flow cytometry; flattening of fluorescent erythrocytes for microscopic observation; imaging and digital analysis to relate the gray level intensities to the fluorophore density; and using this procedure to characterize a different, more easily obtainable, standard. The latter can be a 50% solution of Na fluorescein that yields a highly reproducible and uniform fluorescence. Concentrated fluorescein solution can also be used to correct images for the spatial nonuniformity of illumination and detection (shading correction). By applying this method to study the binding of IgG and fibrinogen to glass or amidated glass, we showed that protein adsorption to glass may result in protein aggregation that may affect the biological activity of the adsorbed protein. © 2000 John Wiley & Sons, Inc. J Biomed Mater Res, 50, 90–96, 2000.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10644968</pmid><doi>10.1002/(SICI)1097-4636(200004)50:1<90::AID-JBM13>3.0.CO;2-3</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9304 |
ispartof | Journal of biomedical materials research, 2000-04, Vol.50 (1), p.90-96 |
issn | 0021-9304 1097-4636 |
language | eng |
recordid | cdi_proquest_miscellaneous_70877730 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adsorption Agglomeration Biocompatible Materials Biological and medical sciences calibration Cells Density (specific gravity) Erythrocyte Membrane - ultrastructure Erythrocytes - cytology Fibrinogen - chemistry Flow Cytometry - methods Fluorescein Fluorescence fluorescence microscopy Fluorescent Dyes Glass Humans Image analysis Immunoglobulin G - chemistry Medical sciences Microscopy, Fluorescence - methods Optical microscopy protein adsorption Proteins Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Reproducibility of Results shading correction surface density Technology. Biomaterials. Equipments. Material. Instrumentation |
title | Quantification of the surface density of a fluorescent label with the optical microscope |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20the%20surface%20density%20of%20a%20fluorescent%20label%20with%20the%20optical%20microscope&rft.jtitle=Journal%20of%20biomedical%20materials%20research&rft.au=Model,%20Michael%20A.&rft.date=2000-04&rft.volume=50&rft.issue=1&rft.spage=90&rft.epage=96&rft.pages=90-96&rft.issn=0021-9304&rft.eissn=1097-4636&rft.coden=JBMRBG&rft_id=info:doi/10.1002/(SICI)1097-4636(200004)50:1%3C90::AID-JBM13%3E3.0.CO;2-3&rft_dat=%3Cproquest_cross%3E540870%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4603-ee1a74948e04fd7faf1b3b96becf0c7029dd3144c74310e63de7a74fc483c5c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21442386&rft_id=info:pmid/10644968&rfr_iscdi=true |