Loading…
Breeding stock-specific variation in peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid splicing in rat pituitary
Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the carboxyl-terminal amidation of glycine-extended peptides in a two-step reaction involving a monooxygenase and a lyase. Several forms of PAM messenger RNA result from alternative splicing of the single cop...
Saved in:
Published in: | Endocrinology (Philadelphia) 2000-02, Vol.141 (2), p.476-486 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 486 |
container_issue | 2 |
container_start_page | 476 |
container_title | Endocrinology (Philadelphia) |
container_volume | 141 |
creator | Ciccotosto, G D Hand, T A Mains, R E Eipper, B A |
description | Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the carboxyl-terminal amidation of glycine-extended peptides in a two-step reaction involving a monooxygenase and a lyase. Several forms of PAM messenger RNA result from alternative splicing of the single copy PAM gene. The presence of alternately spliced exon A between the two enzymatic domains allows endoproteolytic cleavage to occur in selected tissues, generating soluble monooxygenase and membrane lyase from integral membrane PAM. While using an exon A antiserum, we made the unexpected observation that Charles River Sprague Dawley rats expressed forms of PAM containing exon A in their pituitaries, whereas Harlan Sprague Dawley rats did not. Forms of PAM containing exon A were expressed in the atrium and hypothalamus of both types of Sprague Dawley rat, although in different proportions. PAM transmembrane domain splicing also differed between rat breeders, and full-length PAM-1 was not prevalent in the anterior pituitary of either type of rat. Despite striking differences in PAM splicing, no differences in levels of monooxygenase or lyase activity were observed in tissue or serum samples. The splicing patterns of other alternatively spliced genes, pituitary adenylate cyclase-activating polypeptide receptor type 1 and cardiac troponin T, did not vary with rat breeder. Strain-specific variations in the splicing of transcripts such as PAM must be taken into account in analyzing the resultant proteins, and knowledge of these differences should identify variations with functional significance. |
doi_str_mv | 10.1210/endo.141.2.7337 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70882744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70882744</sourcerecordid><originalsourceid>FETCH-LOGICAL-p150t-a096c4e7fbf88e1f2cd61599ce9215760201c908255a3f10a7d9d913822e4ed03</originalsourceid><addsrcrecordid>eNpdkMFu1DAQhi1ERZelZ27IEhK3bD12HMfHUlGKVIlLOUdee7K4JLZrJ1X3CfraGLVcehqN9P2fZn5CPgLbAQd2jsHFHbSw4zslhHpDNqBb2ShQ7C3ZMAaiUZyrU_K-lLu6tm0r3pFTYJ1kmncb8vQ1IzofDrQs0f5pSkLrR2_pg8neLD4G6gNNmBbvjtNhOlofkJop_TaNmb2rSM3OMcT4eDxgMAXpjKVgOGCm2e9jWO2EVWisd7Skydt_iSrNZqHJL6tfTD5-ICejmQqevcwt-XX17fbyurn5-f3H5cVNk0CypTFMd7ZFNe7HvkcYuXUdSK0tag5SdYwzsJr1XEojRmBGOe00iJ5zbNExsSVfnr0px_sVyzLMvlicJhMwrmVQrO-5qi1tyedX4F1cc6i3DQIEk9B2Slbq0wu17md0Q8p-rt8M_wsWfwFxKIAW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130514675</pqid></control><display><type>article</type><title>Breeding stock-specific variation in peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid splicing in rat pituitary</title><source>Oxford Journals Online</source><creator>Ciccotosto, G D ; Hand, T A ; Mains, R E ; Eipper, B A</creator><creatorcontrib>Ciccotosto, G D ; Hand, T A ; Mains, R E ; Eipper, B A</creatorcontrib><description>Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the carboxyl-terminal amidation of glycine-extended peptides in a two-step reaction involving a monooxygenase and a lyase. Several forms of PAM messenger RNA result from alternative splicing of the single copy PAM gene. The presence of alternately spliced exon A between the two enzymatic domains allows endoproteolytic cleavage to occur in selected tissues, generating soluble monooxygenase and membrane lyase from integral membrane PAM. While using an exon A antiserum, we made the unexpected observation that Charles River Sprague Dawley rats expressed forms of PAM containing exon A in their pituitaries, whereas Harlan Sprague Dawley rats did not. Forms of PAM containing exon A were expressed in the atrium and hypothalamus of both types of Sprague Dawley rat, although in different proportions. PAM transmembrane domain splicing also differed between rat breeders, and full-length PAM-1 was not prevalent in the anterior pituitary of either type of rat. Despite striking differences in PAM splicing, no differences in levels of monooxygenase or lyase activity were observed in tissue or serum samples. The splicing patterns of other alternatively spliced genes, pituitary adenylate cyclase-activating polypeptide receptor type 1 and cardiac troponin T, did not vary with rat breeder. Strain-specific variations in the splicing of transcripts such as PAM must be taken into account in analyzing the resultant proteins, and knowledge of these differences should identify variations with functional significance.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/endo.141.2.7337</identifier><identifier>PMID: 10650926</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Alternative Splicing ; Animals ; Antisera ; Atria ; Breeding - methods ; Exons ; Gene Expression Regulation, Enzymologic ; Genetic Variation ; Glycine ; Hypothalamus ; Hypothalamus - enzymology ; Male ; Membranes ; Mixed Function Oxygenases - genetics ; Monooxygenase ; mRNA ; Multienzyme Complexes ; Peptides ; Pituitary (anterior) ; Pituitary adenylate cyclase-activating polypeptide ; Pituitary Gland - enzymology ; Pituitary Gland, Anterior - enzymology ; Polymerase Chain Reaction ; Polypeptides ; Pro-Opiomelanocortin - biosynthesis ; Pro-Opiomelanocortin - genetics ; Rats ; Rats, Sprague-Dawley ; RNA Splicing ; RNA, Messenger - genetics ; Species Specificity ; Strain analysis ; Transmembrane domains ; Troponin ; Troponin T ; Variation</subject><ispartof>Endocrinology (Philadelphia), 2000-02, Vol.141 (2), p.476-486</ispartof><rights>Copyright © 2000 by The Endocrine Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10650926$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciccotosto, G D</creatorcontrib><creatorcontrib>Hand, T A</creatorcontrib><creatorcontrib>Mains, R E</creatorcontrib><creatorcontrib>Eipper, B A</creatorcontrib><title>Breeding stock-specific variation in peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid splicing in rat pituitary</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the carboxyl-terminal amidation of glycine-extended peptides in a two-step reaction involving a monooxygenase and a lyase. Several forms of PAM messenger RNA result from alternative splicing of the single copy PAM gene. The presence of alternately spliced exon A between the two enzymatic domains allows endoproteolytic cleavage to occur in selected tissues, generating soluble monooxygenase and membrane lyase from integral membrane PAM. While using an exon A antiserum, we made the unexpected observation that Charles River Sprague Dawley rats expressed forms of PAM containing exon A in their pituitaries, whereas Harlan Sprague Dawley rats did not. Forms of PAM containing exon A were expressed in the atrium and hypothalamus of both types of Sprague Dawley rat, although in different proportions. PAM transmembrane domain splicing also differed between rat breeders, and full-length PAM-1 was not prevalent in the anterior pituitary of either type of rat. Despite striking differences in PAM splicing, no differences in levels of monooxygenase or lyase activity were observed in tissue or serum samples. The splicing patterns of other alternatively spliced genes, pituitary adenylate cyclase-activating polypeptide receptor type 1 and cardiac troponin T, did not vary with rat breeder. Strain-specific variations in the splicing of transcripts such as PAM must be taken into account in analyzing the resultant proteins, and knowledge of these differences should identify variations with functional significance.</description><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Antisera</subject><subject>Atria</subject><subject>Breeding - methods</subject><subject>Exons</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Genetic Variation</subject><subject>Glycine</subject><subject>Hypothalamus</subject><subject>Hypothalamus - enzymology</subject><subject>Male</subject><subject>Membranes</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Monooxygenase</subject><subject>mRNA</subject><subject>Multienzyme Complexes</subject><subject>Peptides</subject><subject>Pituitary (anterior)</subject><subject>Pituitary adenylate cyclase-activating polypeptide</subject><subject>Pituitary Gland - enzymology</subject><subject>Pituitary Gland, Anterior - enzymology</subject><subject>Polymerase Chain Reaction</subject><subject>Polypeptides</subject><subject>Pro-Opiomelanocortin - biosynthesis</subject><subject>Pro-Opiomelanocortin - genetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA Splicing</subject><subject>RNA, Messenger - genetics</subject><subject>Species Specificity</subject><subject>Strain analysis</subject><subject>Transmembrane domains</subject><subject>Troponin</subject><subject>Troponin T</subject><subject>Variation</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpdkMFu1DAQhi1ERZelZ27IEhK3bD12HMfHUlGKVIlLOUdee7K4JLZrJ1X3CfraGLVcehqN9P2fZn5CPgLbAQd2jsHFHbSw4zslhHpDNqBb2ShQ7C3ZMAaiUZyrU_K-lLu6tm0r3pFTYJ1kmncb8vQ1IzofDrQs0f5pSkLrR2_pg8neLD4G6gNNmBbvjtNhOlofkJop_TaNmb2rSM3OMcT4eDxgMAXpjKVgOGCm2e9jWO2EVWisd7Skydt_iSrNZqHJL6tfTD5-ICejmQqevcwt-XX17fbyurn5-f3H5cVNk0CypTFMd7ZFNe7HvkcYuXUdSK0tag5SdYwzsJr1XEojRmBGOe00iJ5zbNExsSVfnr0px_sVyzLMvlicJhMwrmVQrO-5qi1tyedX4F1cc6i3DQIEk9B2Slbq0wu17md0Q8p-rt8M_wsWfwFxKIAW</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Ciccotosto, G D</creator><creator>Hand, T A</creator><creator>Mains, R E</creator><creator>Eipper, B A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200002</creationdate><title>Breeding stock-specific variation in peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid splicing in rat pituitary</title><author>Ciccotosto, G D ; Hand, T A ; Mains, R E ; Eipper, B A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p150t-a096c4e7fbf88e1f2cd61599ce9215760201c908255a3f10a7d9d913822e4ed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Antisera</topic><topic>Atria</topic><topic>Breeding - methods</topic><topic>Exons</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Genetic Variation</topic><topic>Glycine</topic><topic>Hypothalamus</topic><topic>Hypothalamus - enzymology</topic><topic>Male</topic><topic>Membranes</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Monooxygenase</topic><topic>mRNA</topic><topic>Multienzyme Complexes</topic><topic>Peptides</topic><topic>Pituitary (anterior)</topic><topic>Pituitary adenylate cyclase-activating polypeptide</topic><topic>Pituitary Gland - enzymology</topic><topic>Pituitary Gland, Anterior - enzymology</topic><topic>Polymerase Chain Reaction</topic><topic>Polypeptides</topic><topic>Pro-Opiomelanocortin - biosynthesis</topic><topic>Pro-Opiomelanocortin - genetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA Splicing</topic><topic>RNA, Messenger - genetics</topic><topic>Species Specificity</topic><topic>Strain analysis</topic><topic>Transmembrane domains</topic><topic>Troponin</topic><topic>Troponin T</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciccotosto, G D</creatorcontrib><creatorcontrib>Hand, T A</creatorcontrib><creatorcontrib>Mains, R E</creatorcontrib><creatorcontrib>Eipper, B A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciccotosto, G D</au><au>Hand, T A</au><au>Mains, R E</au><au>Eipper, B A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breeding stock-specific variation in peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid splicing in rat pituitary</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2000-02</date><risdate>2000</risdate><volume>141</volume><issue>2</issue><spage>476</spage><epage>486</epage><pages>476-486</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><abstract>Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme that catalyzes the carboxyl-terminal amidation of glycine-extended peptides in a two-step reaction involving a monooxygenase and a lyase. Several forms of PAM messenger RNA result from alternative splicing of the single copy PAM gene. The presence of alternately spliced exon A between the two enzymatic domains allows endoproteolytic cleavage to occur in selected tissues, generating soluble monooxygenase and membrane lyase from integral membrane PAM. While using an exon A antiserum, we made the unexpected observation that Charles River Sprague Dawley rats expressed forms of PAM containing exon A in their pituitaries, whereas Harlan Sprague Dawley rats did not. Forms of PAM containing exon A were expressed in the atrium and hypothalamus of both types of Sprague Dawley rat, although in different proportions. PAM transmembrane domain splicing also differed between rat breeders, and full-length PAM-1 was not prevalent in the anterior pituitary of either type of rat. Despite striking differences in PAM splicing, no differences in levels of monooxygenase or lyase activity were observed in tissue or serum samples. The splicing patterns of other alternatively spliced genes, pituitary adenylate cyclase-activating polypeptide receptor type 1 and cardiac troponin T, did not vary with rat breeder. Strain-specific variations in the splicing of transcripts such as PAM must be taken into account in analyzing the resultant proteins, and knowledge of these differences should identify variations with functional significance.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>10650926</pmid><doi>10.1210/endo.141.2.7337</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2000-02, Vol.141 (2), p.476-486 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_70882744 |
source | Oxford Journals Online |
subjects | Alternative Splicing Animals Antisera Atria Breeding - methods Exons Gene Expression Regulation, Enzymologic Genetic Variation Glycine Hypothalamus Hypothalamus - enzymology Male Membranes Mixed Function Oxygenases - genetics Monooxygenase mRNA Multienzyme Complexes Peptides Pituitary (anterior) Pituitary adenylate cyclase-activating polypeptide Pituitary Gland - enzymology Pituitary Gland, Anterior - enzymology Polymerase Chain Reaction Polypeptides Pro-Opiomelanocortin - biosynthesis Pro-Opiomelanocortin - genetics Rats Rats, Sprague-Dawley RNA Splicing RNA, Messenger - genetics Species Specificity Strain analysis Transmembrane domains Troponin Troponin T Variation |
title | Breeding stock-specific variation in peptidylglycine alpha-amidating monooxygenase messenger ribonucleic acid splicing in rat pituitary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breeding%20stock-specific%20variation%20in%20peptidylglycine%20alpha-amidating%20monooxygenase%20messenger%20ribonucleic%20acid%20splicing%20in%20rat%20pituitary&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Ciccotosto,%20G%20D&rft.date=2000-02&rft.volume=141&rft.issue=2&rft.spage=476&rft.epage=486&rft.pages=476-486&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/endo.141.2.7337&rft_dat=%3Cproquest_pubme%3E70882744%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p150t-a096c4e7fbf88e1f2cd61599ce9215760201c908255a3f10a7d9d913822e4ed03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130514675&rft_id=info:pmid/10650926&rfr_iscdi=true |