Loading…

Reverse transcriptase template switching during reverse transcriptase–polymerase chain reaction: Artificial generation of deletions in ribonucleotide reductase mRNA

Using reverse transcriptase–polymerase chain reaction (RT-PCR), we have recently described a bona fide deletion within the coding sequence of the large subunit of ribonucleotide reductase (R1) mRNA in colon cancer. Consecutive studies have raised questions about the nature of this phenomenon, becaus...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of laboratory and clinical medicine 2001-06, Vol.137 (6), p.422-428
Main Authors: Mader, Robert M., Schmidt, Wolfgang M., Sedivy, Roland, Rizovski, Blanka, Braun, Johanna, Kalipciyan, Maria, Exner, Markus, Steger, Guenther G., Mueller, Manfred W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-257c1e59e59c2b16cb9dbf6b1a6d788c676da690fbdf6b974e8c23327b5f05f03
cites cdi_FETCH-LOGICAL-c467t-257c1e59e59c2b16cb9dbf6b1a6d788c676da690fbdf6b974e8c23327b5f05f03
container_end_page 428
container_issue 6
container_start_page 422
container_title The Journal of laboratory and clinical medicine
container_volume 137
creator Mader, Robert M.
Schmidt, Wolfgang M.
Sedivy, Roland
Rizovski, Blanka
Braun, Johanna
Kalipciyan, Maria
Exner, Markus
Steger, Guenther G.
Mueller, Manfred W.
description Using reverse transcriptase–polymerase chain reaction (RT-PCR), we have recently described a bona fide deletion within the coding sequence of the large subunit of ribonucleotide reductase (R1) mRNA in colon cancer. Consecutive studies have raised questions about the nature of this phenomenon, because the corresponding genomic alteration at the DNA level or an aberrant protein could not be detected. Thus we considered an in vitro artifact during RT-PCR as a possible explanation for this observation. In contrast to reverse transcriptase, Taq DNA polymerase or C. therm DNA polymerase did not generate the aberrant product, suggesting the demand for the template switching activity intrinsic to retroviral reverse transcriptases. In fact, virtually the same deletion was observed in RT-PCR experiments when in vitro transcribed R1 mRNA was used. Considering structural prerequisites for template switching within R1 mRNA, we show that two direct repeats adjacent to a strong stem-loop secondary structure flank the deleted region of 1851 base pairs. Because several mRNAs encoding proteins of clinical and diagnostic importance fulfill these criteria, template switching enhances the potential risk of observing artifacts when interpreting results from RT-PCR studies. As shown in the present example, this may involve the artificial generation and the misinterpretation of PCR fragments amplified from targets relevant to tumor biology or cancer pharmacology. As a possible solution, one-step PCR with C. therm polymerase should be considered. This polymerase eliminates the artificial generation of aberrant mRNA signals observed during cDNA synthesis. (J Lab Clin Med 2001;137:422-8)
doi_str_mv 10.1067/mlc.2001.115452
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70896581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022214301952266</els_id><sourcerecordid>70896581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-257c1e59e59c2b16cb9dbf6b1a6d788c676da690fbdf6b974e8c23327b5f05f03</originalsourceid><addsrcrecordid>eNp1kc-KFDEQxoMo7rh69iZ9EG89mz-dpNvbsLgqLAqLnkO6Ur0bSXePSXplb77DvoMP5pOYdgb0oFBQSfH7Por6CHnO6JZRpc_GAFtOKdsyJhvJH5ANk4LXSjbiIdlQynnNWSNOyJOUvlBKO9Hpx-SEMdFKocSG_LjCW4wJqxztlCD6fbbrD8d9sBmr9M1nuPHTdeWWuLb4L_7n9_v9HO5GjKsYbqyfCmgh-3l6Xe1i9oMHb0N1jVNh1nE1D5XDgOs7VSvv-3laIOCcvcMidwv83mW8-rB7Sh4NNiR8duyn5PPFm0_n7-rLj2_fn-8ua2iUzjWXGhjKrhTwninoO9cPqmdWOd22oLRyVnV06F2ZdrrBFrgQXPdyoKXEKXl18N3H-euCKZvRJ8AQ7ITzkoymbadkywp4dgAhzilFHMw--tHGO8OoWaMxJRqzRmMO0RTFi6P10o_o_vDHLArw8gjYBDYM5cDg01--SmqtCtYdMCx3uPUYTQKPE6DzESEbN_v_7vALG26wrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70896581</pqid></control><display><type>article</type><title>Reverse transcriptase template switching during reverse transcriptase–polymerase chain reaction: Artificial generation of deletions in ribonucleotide reductase mRNA</title><source>Elsevier</source><creator>Mader, Robert M. ; Schmidt, Wolfgang M. ; Sedivy, Roland ; Rizovski, Blanka ; Braun, Johanna ; Kalipciyan, Maria ; Exner, Markus ; Steger, Guenther G. ; Mueller, Manfred W.</creator><creatorcontrib>Mader, Robert M. ; Schmidt, Wolfgang M. ; Sedivy, Roland ; Rizovski, Blanka ; Braun, Johanna ; Kalipciyan, Maria ; Exner, Markus ; Steger, Guenther G. ; Mueller, Manfred W.</creatorcontrib><description>Using reverse transcriptase–polymerase chain reaction (RT-PCR), we have recently described a bona fide deletion within the coding sequence of the large subunit of ribonucleotide reductase (R1) mRNA in colon cancer. Consecutive studies have raised questions about the nature of this phenomenon, because the corresponding genomic alteration at the DNA level or an aberrant protein could not be detected. Thus we considered an in vitro artifact during RT-PCR as a possible explanation for this observation. In contrast to reverse transcriptase, Taq DNA polymerase or C. therm DNA polymerase did not generate the aberrant product, suggesting the demand for the template switching activity intrinsic to retroviral reverse transcriptases. In fact, virtually the same deletion was observed in RT-PCR experiments when in vitro transcribed R1 mRNA was used. Considering structural prerequisites for template switching within R1 mRNA, we show that two direct repeats adjacent to a strong stem-loop secondary structure flank the deleted region of 1851 base pairs. Because several mRNAs encoding proteins of clinical and diagnostic importance fulfill these criteria, template switching enhances the potential risk of observing artifacts when interpreting results from RT-PCR studies. As shown in the present example, this may involve the artificial generation and the misinterpretation of PCR fragments amplified from targets relevant to tumor biology or cancer pharmacology. As a possible solution, one-step PCR with C. therm polymerase should be considered. This polymerase eliminates the artificial generation of aberrant mRNA signals observed during cDNA synthesis. (J Lab Clin Med 2001;137:422-8)</description><identifier>ISSN: 0022-2143</identifier><identifier>EISSN: 1532-6543</identifier><identifier>DOI: 10.1067/mlc.2001.115452</identifier><identifier>PMID: 11385363</identifier><identifier>CODEN: JLCMAK</identifier><language>eng</language><publisher>Saint Louis, MO: Mosby, Inc</publisher><subject>Adenocarcinoma - genetics ; Adenocarcinoma - pathology ; Adenoma, Villous - genetics ; Adenoma, Villous - pathology ; Base Sequence ; Biological and medical sciences ; Colorectal Neoplasms - genetics ; Colorectal Neoplasms - pathology ; Digestive system ; DNA Primers - chemistry ; DNA, Neoplasm - genetics ; DNA-Directed DNA Polymerase - metabolism ; Gene Deletion ; Humans ; Intestinal Mucosa ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Molecular Sequence Data ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleotide Reductases - genetics ; RNA, Messenger - biosynthesis ; Templates, Genetic ; Transcription, Genetic - genetics ; Tumor Cells, Cultured</subject><ispartof>The Journal of laboratory and clinical medicine, 2001-06, Vol.137 (6), p.422-428</ispartof><rights>2001 Mosby, Inc.</rights><rights>2001 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-257c1e59e59c2b16cb9dbf6b1a6d788c676da690fbdf6b974e8c23327b5f05f03</citedby><cites>FETCH-LOGICAL-c467t-257c1e59e59c2b16cb9dbf6b1a6d788c676da690fbdf6b974e8c23327b5f05f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1065776$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11385363$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mader, Robert M.</creatorcontrib><creatorcontrib>Schmidt, Wolfgang M.</creatorcontrib><creatorcontrib>Sedivy, Roland</creatorcontrib><creatorcontrib>Rizovski, Blanka</creatorcontrib><creatorcontrib>Braun, Johanna</creatorcontrib><creatorcontrib>Kalipciyan, Maria</creatorcontrib><creatorcontrib>Exner, Markus</creatorcontrib><creatorcontrib>Steger, Guenther G.</creatorcontrib><creatorcontrib>Mueller, Manfred W.</creatorcontrib><title>Reverse transcriptase template switching during reverse transcriptase–polymerase chain reaction: Artificial generation of deletions in ribonucleotide reductase mRNA</title><title>The Journal of laboratory and clinical medicine</title><addtitle>J Lab Clin Med</addtitle><description>Using reverse transcriptase–polymerase chain reaction (RT-PCR), we have recently described a bona fide deletion within the coding sequence of the large subunit of ribonucleotide reductase (R1) mRNA in colon cancer. Consecutive studies have raised questions about the nature of this phenomenon, because the corresponding genomic alteration at the DNA level or an aberrant protein could not be detected. Thus we considered an in vitro artifact during RT-PCR as a possible explanation for this observation. In contrast to reverse transcriptase, Taq DNA polymerase or C. therm DNA polymerase did not generate the aberrant product, suggesting the demand for the template switching activity intrinsic to retroviral reverse transcriptases. In fact, virtually the same deletion was observed in RT-PCR experiments when in vitro transcribed R1 mRNA was used. Considering structural prerequisites for template switching within R1 mRNA, we show that two direct repeats adjacent to a strong stem-loop secondary structure flank the deleted region of 1851 base pairs. Because several mRNAs encoding proteins of clinical and diagnostic importance fulfill these criteria, template switching enhances the potential risk of observing artifacts when interpreting results from RT-PCR studies. As shown in the present example, this may involve the artificial generation and the misinterpretation of PCR fragments amplified from targets relevant to tumor biology or cancer pharmacology. As a possible solution, one-step PCR with C. therm polymerase should be considered. This polymerase eliminates the artificial generation of aberrant mRNA signals observed during cDNA synthesis. (J Lab Clin Med 2001;137:422-8)</description><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - pathology</subject><subject>Adenoma, Villous - genetics</subject><subject>Adenoma, Villous - pathology</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Colorectal Neoplasms - pathology</subject><subject>Digestive system</subject><subject>DNA Primers - chemistry</subject><subject>DNA, Neoplasm - genetics</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Gene Deletion</subject><subject>Humans</subject><subject>Intestinal Mucosa</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Molecular Sequence Data</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleotide Reductases - genetics</subject><subject>RNA, Messenger - biosynthesis</subject><subject>Templates, Genetic</subject><subject>Transcription, Genetic - genetics</subject><subject>Tumor Cells, Cultured</subject><issn>0022-2143</issn><issn>1532-6543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kc-KFDEQxoMo7rh69iZ9EG89mz-dpNvbsLgqLAqLnkO6Ur0bSXePSXplb77DvoMP5pOYdgb0oFBQSfH7Por6CHnO6JZRpc_GAFtOKdsyJhvJH5ANk4LXSjbiIdlQynnNWSNOyJOUvlBKO9Hpx-SEMdFKocSG_LjCW4wJqxztlCD6fbbrD8d9sBmr9M1nuPHTdeWWuLb4L_7n9_v9HO5GjKsYbqyfCmgh-3l6Xe1i9oMHb0N1jVNh1nE1D5XDgOs7VSvv-3laIOCcvcMidwv83mW8-rB7Sh4NNiR8duyn5PPFm0_n7-rLj2_fn-8ua2iUzjWXGhjKrhTwninoO9cPqmdWOd22oLRyVnV06F2ZdrrBFrgQXPdyoKXEKXl18N3H-euCKZvRJ8AQ7ITzkoymbadkywp4dgAhzilFHMw--tHGO8OoWaMxJRqzRmMO0RTFi6P10o_o_vDHLArw8gjYBDYM5cDg01--SmqtCtYdMCx3uPUYTQKPE6DzESEbN_v_7vALG26wrQ</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Mader, Robert M.</creator><creator>Schmidt, Wolfgang M.</creator><creator>Sedivy, Roland</creator><creator>Rizovski, Blanka</creator><creator>Braun, Johanna</creator><creator>Kalipciyan, Maria</creator><creator>Exner, Markus</creator><creator>Steger, Guenther G.</creator><creator>Mueller, Manfred W.</creator><general>Mosby, Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Reverse transcriptase template switching during reverse transcriptase–polymerase chain reaction: Artificial generation of deletions in ribonucleotide reductase mRNA</title><author>Mader, Robert M. ; Schmidt, Wolfgang M. ; Sedivy, Roland ; Rizovski, Blanka ; Braun, Johanna ; Kalipciyan, Maria ; Exner, Markus ; Steger, Guenther G. ; Mueller, Manfred W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-257c1e59e59c2b16cb9dbf6b1a6d788c676da690fbdf6b974e8c23327b5f05f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - pathology</topic><topic>Adenoma, Villous - genetics</topic><topic>Adenoma, Villous - pathology</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Colorectal Neoplasms - pathology</topic><topic>Digestive system</topic><topic>DNA Primers - chemistry</topic><topic>DNA, Neoplasm - genetics</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Gene Deletion</topic><topic>Humans</topic><topic>Intestinal Mucosa</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Molecular Sequence Data</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleotide Reductases - genetics</topic><topic>RNA, Messenger - biosynthesis</topic><topic>Templates, Genetic</topic><topic>Transcription, Genetic - genetics</topic><topic>Tumor Cells, Cultured</topic><toplevel>online_resources</toplevel><creatorcontrib>Mader, Robert M.</creatorcontrib><creatorcontrib>Schmidt, Wolfgang M.</creatorcontrib><creatorcontrib>Sedivy, Roland</creatorcontrib><creatorcontrib>Rizovski, Blanka</creatorcontrib><creatorcontrib>Braun, Johanna</creatorcontrib><creatorcontrib>Kalipciyan, Maria</creatorcontrib><creatorcontrib>Exner, Markus</creatorcontrib><creatorcontrib>Steger, Guenther G.</creatorcontrib><creatorcontrib>Mueller, Manfred W.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of laboratory and clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mader, Robert M.</au><au>Schmidt, Wolfgang M.</au><au>Sedivy, Roland</au><au>Rizovski, Blanka</au><au>Braun, Johanna</au><au>Kalipciyan, Maria</au><au>Exner, Markus</au><au>Steger, Guenther G.</au><au>Mueller, Manfred W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse transcriptase template switching during reverse transcriptase–polymerase chain reaction: Artificial generation of deletions in ribonucleotide reductase mRNA</atitle><jtitle>The Journal of laboratory and clinical medicine</jtitle><addtitle>J Lab Clin Med</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>137</volume><issue>6</issue><spage>422</spage><epage>428</epage><pages>422-428</pages><issn>0022-2143</issn><eissn>1532-6543</eissn><coden>JLCMAK</coden><abstract>Using reverse transcriptase–polymerase chain reaction (RT-PCR), we have recently described a bona fide deletion within the coding sequence of the large subunit of ribonucleotide reductase (R1) mRNA in colon cancer. Consecutive studies have raised questions about the nature of this phenomenon, because the corresponding genomic alteration at the DNA level or an aberrant protein could not be detected. Thus we considered an in vitro artifact during RT-PCR as a possible explanation for this observation. In contrast to reverse transcriptase, Taq DNA polymerase or C. therm DNA polymerase did not generate the aberrant product, suggesting the demand for the template switching activity intrinsic to retroviral reverse transcriptases. In fact, virtually the same deletion was observed in RT-PCR experiments when in vitro transcribed R1 mRNA was used. Considering structural prerequisites for template switching within R1 mRNA, we show that two direct repeats adjacent to a strong stem-loop secondary structure flank the deleted region of 1851 base pairs. Because several mRNAs encoding proteins of clinical and diagnostic importance fulfill these criteria, template switching enhances the potential risk of observing artifacts when interpreting results from RT-PCR studies. As shown in the present example, this may involve the artificial generation and the misinterpretation of PCR fragments amplified from targets relevant to tumor biology or cancer pharmacology. As a possible solution, one-step PCR with C. therm polymerase should be considered. This polymerase eliminates the artificial generation of aberrant mRNA signals observed during cDNA synthesis. (J Lab Clin Med 2001;137:422-8)</abstract><cop>Saint Louis, MO</cop><pub>Mosby, Inc</pub><pmid>11385363</pmid><doi>10.1067/mlc.2001.115452</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2143
ispartof The Journal of laboratory and clinical medicine, 2001-06, Vol.137 (6), p.422-428
issn 0022-2143
1532-6543
language eng
recordid cdi_proquest_miscellaneous_70896581
source Elsevier
subjects Adenocarcinoma - genetics
Adenocarcinoma - pathology
Adenoma, Villous - genetics
Adenoma, Villous - pathology
Base Sequence
Biological and medical sciences
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
Digestive system
DNA Primers - chemistry
DNA, Neoplasm - genetics
DNA-Directed DNA Polymerase - metabolism
Gene Deletion
Humans
Intestinal Mucosa
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Molecular Sequence Data
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleotide Reductases - genetics
RNA, Messenger - biosynthesis
Templates, Genetic
Transcription, Genetic - genetics
Tumor Cells, Cultured
title Reverse transcriptase template switching during reverse transcriptase–polymerase chain reaction: Artificial generation of deletions in ribonucleotide reductase mRNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%20transcriptase%20template%20switching%20during%20reverse%20transcriptase%E2%80%93polymerase%20chain%20reaction:%20Artificial%20generation%20of%20deletions%20in%20ribonucleotide%20reductase%20mRNA&rft.jtitle=The%20Journal%20of%20laboratory%20and%20clinical%20medicine&rft.au=Mader,%20Robert%20M.&rft.date=2001-06-01&rft.volume=137&rft.issue=6&rft.spage=422&rft.epage=428&rft.pages=422-428&rft.issn=0022-2143&rft.eissn=1532-6543&rft.coden=JLCMAK&rft_id=info:doi/10.1067/mlc.2001.115452&rft_dat=%3Cproquest_cross%3E70896581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-257c1e59e59c2b16cb9dbf6b1a6d788c676da690fbdf6b974e8c23327b5f05f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70896581&rft_id=info:pmid/11385363&rfr_iscdi=true