Loading…

Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery

A mathematical model was used to evaluate the potential effects of limit-cycle oscillations (LCO) on tubuloglomerular feedback (TGF) regulation of fluid and sodium delivery to the distal tubule. In accordance with linear systems theory, simulations of steady-state responses to infinitesimal perturba...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Renal physiology 2000-02, Vol.278 (2), p.F287-F301
Main Authors: Layton, H E, Pitman, E B, Moore, L C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mathematical model was used to evaluate the potential effects of limit-cycle oscillations (LCO) on tubuloglomerular feedback (TGF) regulation of fluid and sodium delivery to the distal tubule. In accordance with linear systems theory, simulations of steady-state responses to infinitesimal perturbations in single-nephron glomerular filtration rate (SNGFR) show that TGF regulatory ability (assessed as TGF compensation) increases with TGF gain magnitude gamma when gamma is less than the critical value gamma(c), the value at which LCO emerge in tubular fluid flow and NaCl concentration at the macula densa. When gamma > gamma(c) and LCO are present, TGF compensation is reduced for both infinitesimal and finite perturbations in SNGFR, relative to the compensation that could be achieved in the absence of LCO. Maximal TGF compensation occurs when gamma approximately gamma(c). Even in the absence of perturbations, LCO increase time-averaged sodium delivery to the distal tubule, while fluid delivery is little changed. These effects of LCO are consequences of nonlinear elements in the TGF system. Because increased distal sodium delivery may increase the rate of sodium excretion, these simulations suggest that LCO enhance sodium excretion.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.2000.278.2.f287