Loading…
A Photophysical and Photochemical Study of 6-Methoxy-2-naphthylacetic Acid, the Major Metabolite of the Phototoxic Nonsteroidal Antiinflammatory Drug Nabumetone
Nabumetone is a phototoxic nonsteroidal antiinflammatory drug used for the treatment of osteoarthritis. However, nabumetone is considered a prodrug with its metabolite 6-methoxy-2-naphthylacetic acid the active form. Photophysical and photochemical studies on this metabolite have been undertaken. It...
Saved in:
Published in: | Photochemistry and photobiology 2000-02, Vol.71 (2), p.173-177 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nabumetone is a phototoxic nonsteroidal antiinflammatory drug used for the treatment of osteoarthritis. However, nabumetone is considered a prodrug with its metabolite 6-methoxy-2-naphthylacetic acid the active form. Photophysical and photochemical studies on this metabolite have been undertaken. It undergoes photodecarboxylation in aerated aqueous and organic solvents. In addition to the accepted photodegradation pathway for related molecules, a new mechanism that implies generation of the naphthalene radical cation from the excited singlet and addition of O2 prior to the decarboxylation process has been demonstrated. Evidence for the involvement of the excited singlet state in this mechanism have been obtained by steady-state and time-resolved fluorescence experiments. The fluorescence quenching by O2 and the shorter singlet lifetime in aerated solvents support this assignment. Laser flash photolysis also supports this mechanism by showing the noninvolvement of the triplet in the formation of the naphthalene radical cation. Finally, the well-known electron acceptor CCl4 acts as an efficient singlet quencher, enhancing the route leading to the radical cation, preventing intersystem crossing to the triplet and thus resulting in a dramatic increase in the yield of 6-methoxy-2-naphthaldehyde, the major oxidative decarboxylation product; this constitutes unambiguous proof in favor of the new mechanistic proposals. |
---|---|
ISSN: | 0031-8655 1751-1097 |
DOI: | 10.1562/0031-8655(2000)071<0173:APAPSO>2.0.CO;2 |