Loading…

Electrocatalytic Detection of NADH and Glycerol by NAD+-Modified Carbon Electrodes

The electrochemical oxidation of the adenine moiety in NAD+ and other adenine nucleotides at carbon paste electrodes gives rise to redox-active products which strongly adsorb on the electrode surface. Carbon paste electrodes modified with the oxidation products of NAD+ show excellent electrocatalyti...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2000-02, Vol.72 (3), p.520-527
Main Authors: Álvarez-González, M. Isabel, Saidman, Silvana B, Lobo-Castañón, M. Jesús, Miranda-Ordieres, Arturo J, Tuñón-Blanco, Paulino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrochemical oxidation of the adenine moiety in NAD+ and other adenine nucleotides at carbon paste electrodes gives rise to redox-active products which strongly adsorb on the electrode surface. Carbon paste electrodes modified with the oxidation products of NAD+ show excellent electrocatalytic activity toward NADH oxidation, reducing its overpotential by about 400 mV. The rate constant for the catalytic oxidation of NADH, determined by rotating disk electrode measurements and extrapolation to zero concentration of NADH, was found to be 2.5 × 105 M-1 s-1. The catalytic oxidation current allows the amperometric detection of NADH at an applied potential of +50 mV (Ag/AgCl) with a detection limit of 4.0 × 10-7 M and linear response up to 1.0 × 10-5 M NADH. These modified electrodes can be used as amperometric transducers in the design of biosensors based on coupled dehydrogenase enzymes and, in fact, we have designed an amperometric biosensor for glycerol based on the glycerol dehydrogenase (GlDH) system. The enzyme GlDH and its cofactor NAD+ were co-immobilized in a carbon paste electrode using an electropolymerized layer of nonconducting poly(o-phenylenediamine) (PPD). After partial oxidation of the immobilized NAD+, the modified electrode allows the amperometric detection of the NADH enzymatically obtained at applied potential above 0 V (Ag/AgCl). The resulting biosensor shows a fast and linear response to glycerol within the concentration range of 1.0 × 10-6−1.0 × 10-4 M with a detection limit of 4.3 × 10-7 M. The amperometric response remains stable for at least 3 days. The biosensor was applied to the determination of glycerol in a plant-extract syrup, with results in good agreement with those for the standard spectrophotometric method.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac9908344