Loading…

High fat maintenance diet attenuates hindbrain neuronal response to CCK

Rats maintained on a high fat diet reduce their food intake less in response to exogenous cholecystokinin (CCK) than rats maintained on a low fat diet. In addition, inhibition of gastric emptying by CCK is markedly attenuated in rats maintained on a high fat diet. Both inhibition of food intake and...

Full description

Saved in:
Bibliographic Details
Published in:Regulatory peptides 2000-01, Vol.86 (1), p.83-88
Main Authors: Covasa, Mihai, Grahn, Jennifer, Ritter, Robert C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rats maintained on a high fat diet reduce their food intake less in response to exogenous cholecystokinin (CCK) than rats maintained on a low fat diet. In addition, inhibition of gastric emptying by CCK is markedly attenuated in rats maintained on a high fat diet. Both inhibition of food intake and gastric emptying by CCK are mediated by sensory fibers in the vagus nerve. These fibers terminate on dorsal hindbrain neurons of the nucleus of the solitary tract and area postrema. To determine whether diet-induced changes in the control of feeding and gastric emptying are accompanied by altered vagal sensory responsiveness, we examined dorsal hindbrain expression of Fos-like immunoreactivity (Fos-li) following intraperitoneal CCK injection of rats maintained on high fat or low fat diets. Following CCK, there were numerous Fos-li nuclei in the area postrema and in the commissural and medial subnuclei of the nucleus of the solitary tract of rats maintained on a low fat diet. However, Fos-li was absent or rare in the brains of rats maintained on a high fat diet. These data suggest that the vagal sensory response to exogenous CCK is reduced in rats maintained on a high fat diet. Our results also are consistent with our previous findings that CCK-induced reduction of food intake and gastric emptying are both attenuated in rats maintained on a high fat diet. In addition our results support the hypothesis that attenuation of CCK-induced inhibition of food intake and gastric emptying may be due to diet-induced diminution of vagal CCK responsiveness.
ISSN:0167-0115
1873-1686
DOI:10.1016/S0167-0115(99)00084-1