Loading…
Anomalous relaxation and self-organization in nonequilibrium processes
We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2001-06, Vol.63 (6 Pt 2), p.067102-067102 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-b81dd284594b3332bb76df41b52349d4bcb4081e2abc23cb5e3609910b1767ad3 |
---|---|
cites | |
container_end_page | 067102 |
container_issue | 6 Pt 2 |
container_start_page | 067102 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 63 |
creator | Fatkullin, I Kladko, K Mitkov, I Bishop, A R |
description | We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration. |
doi_str_mv | 10.1103/PhysRevE.63.067102 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70934475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70934475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b81dd284594b3332bb76df41b52349d4bcb4081e2abc23cb5e3609910b1767ad3</originalsourceid><addsrcrecordid>eNo1j0FLwzAYhnNQ3Jz-AQ_Sk7fOJF_SNMcxNhUGiui5JM1XjaTp1qzi_PUWNk8vvDy8Lw8hN4zOGaNw__J5SK_4vZoXMKeFYpSfkSmToHNQUk7IZUpflAKHUlyQCWOCSS6LKVkvYtea0A0p6zGYH7P3XcxMdFnC0ORd_2Gi_z22Pmaxi7gbfPC290ObbfuuxpQwXZHzxoSE16eckff16m35mG-eH56Wi01eg1b73JbMOV4KqYUFAG6tKlwjmJUchHbC1lbQkiE3tuZQW4lQUK0ZtUwVyjiYkbvj7vi8GzDtq9anGkMwEUeHSlENQig5grcncLAtumrb-9b0h-rfHP4Ae-1bPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70934475</pqid></control><display><type>article</type><title>Anomalous relaxation and self-organization in nonequilibrium processes</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Fatkullin, I ; Kladko, K ; Mitkov, I ; Bishop, A R</creator><creatorcontrib>Fatkullin, I ; Kladko, K ; Mitkov, I ; Bishop, A R</creatorcontrib><description>We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration.</description><identifier>ISSN: 1539-3755</identifier><identifier>DOI: 10.1103/PhysRevE.63.067102</identifier><identifier>PMID: 11415256</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2001-06, Vol.63 (6 Pt 2), p.067102-067102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b81dd284594b3332bb76df41b52349d4bcb4081e2abc23cb5e3609910b1767ad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11415256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatkullin, I</creatorcontrib><creatorcontrib>Kladko, K</creatorcontrib><creatorcontrib>Mitkov, I</creatorcontrib><creatorcontrib>Bishop, A R</creatorcontrib><title>Anomalous relaxation and self-organization in nonequilibrium processes</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration.</description><issn>1539-3755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo1j0FLwzAYhnNQ3Jz-AQ_Sk7fOJF_SNMcxNhUGiui5JM1XjaTp1qzi_PUWNk8vvDy8Lw8hN4zOGaNw__J5SK_4vZoXMKeFYpSfkSmToHNQUk7IZUpflAKHUlyQCWOCSS6LKVkvYtea0A0p6zGYH7P3XcxMdFnC0ORd_2Gi_z22Pmaxi7gbfPC290ObbfuuxpQwXZHzxoSE16eckff16m35mG-eH56Wi01eg1b73JbMOV4KqYUFAG6tKlwjmJUchHbC1lbQkiE3tuZQW4lQUK0ZtUwVyjiYkbvj7vi8GzDtq9anGkMwEUeHSlENQig5grcncLAtumrb-9b0h-rfHP4Ae-1bPg</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Fatkullin, I</creator><creator>Kladko, K</creator><creator>Mitkov, I</creator><creator>Bishop, A R</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Anomalous relaxation and self-organization in nonequilibrium processes</title><author>Fatkullin, I ; Kladko, K ; Mitkov, I ; Bishop, A R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b81dd284594b3332bb76df41b52349d4bcb4081e2abc23cb5e3609910b1767ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatkullin, I</creatorcontrib><creatorcontrib>Kladko, K</creatorcontrib><creatorcontrib>Mitkov, I</creatorcontrib><creatorcontrib>Bishop, A R</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatkullin, I</au><au>Kladko, K</au><au>Mitkov, I</au><au>Bishop, A R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anomalous relaxation and self-organization in nonequilibrium processes</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>63</volume><issue>6 Pt 2</issue><spage>067102</spage><epage>067102</epage><pages>067102-067102</pages><issn>1539-3755</issn><abstract>We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration.</abstract><cop>United States</cop><pmid>11415256</pmid><doi>10.1103/PhysRevE.63.067102</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2001-06, Vol.63 (6 Pt 2), p.067102-067102 |
issn | 1539-3755 |
language | eng |
recordid | cdi_proquest_miscellaneous_70934475 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Anomalous relaxation and self-organization in nonequilibrium processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anomalous%20relaxation%20and%20self-organization%20in%20nonequilibrium%20processes&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Fatkullin,%20I&rft.date=2001-06-01&rft.volume=63&rft.issue=6%20Pt%202&rft.spage=067102&rft.epage=067102&rft.pages=067102-067102&rft.issn=1539-3755&rft_id=info:doi/10.1103/PhysRevE.63.067102&rft_dat=%3Cproquest_pubme%3E70934475%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-b81dd284594b3332bb76df41b52349d4bcb4081e2abc23cb5e3609910b1767ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70934475&rft_id=info:pmid/11415256&rfr_iscdi=true |