Loading…

Statistical models for longitudinal biomarkers of disease onset

We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fu...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 2000-02, Vol.19 (4), p.617-637
Main Authors: Slate, Elizabeth H., Turnbull, Bruce W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73
container_end_page 637
container_issue 4
container_start_page 617
container_title Statistics in medicine
container_volume 19
creator Slate, Elizabeth H.
Turnbull, Bruce W.
description We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70941104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70941104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYMo7jj6FaQPIrsPHW_-tGlGUZfqjoXVkR1F8eWSpolEO-3adND99mbouAoK5uEGbs49nPwuIc8pLCgAe3S8qcrqhIKSKbCsOGYQD2PqhKqleJJTuVyeVi_STfWa5_CUL2BRrh-z9OIGmV0P3SQzYFKmuaTZEbkTwhcASjMmb5MjCrkSUsCMPNuMevRh9Ea3ybZvbBsS1w9J23ef_bhrfBf7te-3evhqh5D0Lml8sDrYpO-CHe-SW063wd473HPy_uzlu_JVer5eVeXpeWoELyCVIjO1sFzxmmnDMqscaFPHCs7wRmW54nlNjRHUGQaiqXOnXVMoLeOLlXxOHk6-l0P_bWfDiFsfjG1b3dl-F1CCEpSCiMKPk9AMfQiDdXg5-Jj-CingHi7iHi7uOeGeE_6Ci1ShwAgXMcLFCS5yBCzXyPAiWt8_ZNjVW9v8YTzRjIIHB4EOkacbdGd8-K3jtFDxO3PyaZJ99629-ivff-P9M92hE83TyTwu1f64No_rw1xymeGHNyt8eyZXLBcFFvwnsaKxiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70941104</pqid></control><display><type>article</type><title>Statistical models for longitudinal biomarkers of disease onset</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Slate, Elizabeth H. ; Turnbull, Bruce W.</creator><creatorcontrib>Slate, Elizabeth H. ; Turnbull, Bruce W.</creatorcontrib><description>We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(20000229)19:4&lt;617::AID-SIM360&gt;3.0.CO;2-R</identifier><identifier>PMID: 10694740</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Bayes Theorem ; Biological and medical sciences ; Biomarkers ; Computerized, statistical medical data processing and models in biomedicine ; Humans ; Longitudinal Studies ; Male ; Medical sciences ; Medical statistics ; Models, Statistical ; Prostate-Specific Antigen ; Prostatic Neoplasms - diagnosis ; ROC Curve</subject><ispartof>Statistics in medicine, 2000-02, Vol.19 (4), p.617-637</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Ltd.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1318969$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10694740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slate, Elizabeth H.</creatorcontrib><creatorcontrib>Turnbull, Bruce W.</creatorcontrib><title>Statistical models for longitudinal biomarkers of disease onset</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Biomarkers</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Prostate-Specific Antigen</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>ROC Curve</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYMo7jj6FaQPIrsPHW_-tGlGUZfqjoXVkR1F8eWSpolEO-3adND99mbouAoK5uEGbs49nPwuIc8pLCgAe3S8qcrqhIKSKbCsOGYQD2PqhKqleJJTuVyeVi_STfWa5_CUL2BRrh-z9OIGmV0P3SQzYFKmuaTZEbkTwhcASjMmb5MjCrkSUsCMPNuMevRh9Ea3ybZvbBsS1w9J23ef_bhrfBf7te-3evhqh5D0Lml8sDrYpO-CHe-SW063wd473HPy_uzlu_JVer5eVeXpeWoELyCVIjO1sFzxmmnDMqscaFPHCs7wRmW54nlNjRHUGQaiqXOnXVMoLeOLlXxOHk6-l0P_bWfDiFsfjG1b3dl-F1CCEpSCiMKPk9AMfQiDdXg5-Jj-CingHi7iHi7uOeGeE_6Ci1ShwAgXMcLFCS5yBCzXyPAiWt8_ZNjVW9v8YTzRjIIHB4EOkacbdGd8-K3jtFDxO3PyaZJ99629-ivff-P9M92hE83TyTwu1f64No_rw1xymeGHNyt8eyZXLBcFFvwnsaKxiA</recordid><startdate>20000229</startdate><enddate>20000229</enddate><creator>Slate, Elizabeth H.</creator><creator>Turnbull, Bruce W.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000229</creationdate><title>Statistical models for longitudinal biomarkers of disease onset</title><author>Slate, Elizabeth H. ; Turnbull, Bruce W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Biomarkers</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Prostate-Specific Antigen</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slate, Elizabeth H.</creatorcontrib><creatorcontrib>Turnbull, Bruce W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slate, Elizabeth H.</au><au>Turnbull, Bruce W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical models for longitudinal biomarkers of disease onset</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2000-02-29</date><risdate>2000</risdate><volume>19</volume><issue>4</issue><spage>617</spage><epage>637</epage><pages>617-637</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10694740</pmid><doi>10.1002/(SICI)1097-0258(20000229)19:4&lt;617::AID-SIM360&gt;3.0.CO;2-R</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2000-02, Vol.19 (4), p.617-637
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_70941104
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Bayes Theorem
Biological and medical sciences
Biomarkers
Computerized, statistical medical data processing and models in biomedicine
Humans
Longitudinal Studies
Male
Medical sciences
Medical statistics
Models, Statistical
Prostate-Specific Antigen
Prostatic Neoplasms - diagnosis
ROC Curve
title Statistical models for longitudinal biomarkers of disease onset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20models%20for%20longitudinal%20biomarkers%20of%20disease%20onset&rft.jtitle=Statistics%20in%20medicine&rft.au=Slate,%20Elizabeth%20H.&rft.date=2000-02-29&rft.volume=19&rft.issue=4&rft.spage=617&rft.epage=637&rft.pages=617-637&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(20000229)19:4%3C617::AID-SIM360%3E3.0.CO;2-R&rft_dat=%3Cproquest_cross%3E70941104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70941104&rft_id=info:pmid/10694740&rfr_iscdi=true