Loading…
Statistical models for longitudinal biomarkers of disease onset
We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fu...
Saved in:
Published in: | Statistics in medicine 2000-02, Vol.19 (4), p.617-637 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73 |
container_end_page | 637 |
container_issue | 4 |
container_start_page | 617 |
container_title | Statistics in medicine |
container_volume | 19 |
creator | Slate, Elizabeth H. Turnbull, Bruce W. |
description | We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70941104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70941104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYMo7jj6FaQPIrsPHW_-tGlGUZfqjoXVkR1F8eWSpolEO-3adND99mbouAoK5uEGbs49nPwuIc8pLCgAe3S8qcrqhIKSKbCsOGYQD2PqhKqleJJTuVyeVi_STfWa5_CUL2BRrh-z9OIGmV0P3SQzYFKmuaTZEbkTwhcASjMmb5MjCrkSUsCMPNuMevRh9Ea3ybZvbBsS1w9J23ef_bhrfBf7te-3evhqh5D0Lml8sDrYpO-CHe-SW063wd473HPy_uzlu_JVer5eVeXpeWoELyCVIjO1sFzxmmnDMqscaFPHCs7wRmW54nlNjRHUGQaiqXOnXVMoLeOLlXxOHk6-l0P_bWfDiFsfjG1b3dl-F1CCEpSCiMKPk9AMfQiDdXg5-Jj-CingHi7iHi7uOeGeE_6Ci1ShwAgXMcLFCS5yBCzXyPAiWt8_ZNjVW9v8YTzRjIIHB4EOkacbdGd8-K3jtFDxO3PyaZJ99629-ivff-P9M92hE83TyTwu1f64No_rw1xymeGHNyt8eyZXLBcFFvwnsaKxiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70941104</pqid></control><display><type>article</type><title>Statistical models for longitudinal biomarkers of disease onset</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Slate, Elizabeth H. ; Turnbull, Bruce W.</creator><creatorcontrib>Slate, Elizabeth H. ; Turnbull, Bruce W.</creatorcontrib><description>We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R</identifier><identifier>PMID: 10694740</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Bayes Theorem ; Biological and medical sciences ; Biomarkers ; Computerized, statistical medical data processing and models in biomedicine ; Humans ; Longitudinal Studies ; Male ; Medical sciences ; Medical statistics ; Models, Statistical ; Prostate-Specific Antigen ; Prostatic Neoplasms - diagnosis ; ROC Curve</subject><ispartof>Statistics in medicine, 2000-02, Vol.19 (4), p.617-637</ispartof><rights>Copyright © 2000 John Wiley & Sons, Ltd.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1318969$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10694740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slate, Elizabeth H.</creatorcontrib><creatorcontrib>Turnbull, Bruce W.</creatorcontrib><title>Statistical models for longitudinal biomarkers of disease onset</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Biomarkers</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Prostate-Specific Antigen</subject><subject>Prostatic Neoplasms - diagnosis</subject><subject>ROC Curve</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYMo7jj6FaQPIrsPHW_-tGlGUZfqjoXVkR1F8eWSpolEO-3adND99mbouAoK5uEGbs49nPwuIc8pLCgAe3S8qcrqhIKSKbCsOGYQD2PqhKqleJJTuVyeVi_STfWa5_CUL2BRrh-z9OIGmV0P3SQzYFKmuaTZEbkTwhcASjMmb5MjCrkSUsCMPNuMevRh9Ea3ybZvbBsS1w9J23ef_bhrfBf7te-3evhqh5D0Lml8sDrYpO-CHe-SW063wd473HPy_uzlu_JVer5eVeXpeWoELyCVIjO1sFzxmmnDMqscaFPHCs7wRmW54nlNjRHUGQaiqXOnXVMoLeOLlXxOHk6-l0P_bWfDiFsfjG1b3dl-F1CCEpSCiMKPk9AMfQiDdXg5-Jj-CingHi7iHi7uOeGeE_6Ci1ShwAgXMcLFCS5yBCzXyPAiWt8_ZNjVW9v8YTzRjIIHB4EOkacbdGd8-K3jtFDxO3PyaZJ99629-ivff-P9M92hE83TyTwu1f64No_rw1xymeGHNyt8eyZXLBcFFvwnsaKxiA</recordid><startdate>20000229</startdate><enddate>20000229</enddate><creator>Slate, Elizabeth H.</creator><creator>Turnbull, Bruce W.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000229</creationdate><title>Statistical models for longitudinal biomarkers of disease onset</title><author>Slate, Elizabeth H. ; Turnbull, Bruce W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Biomarkers</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Prostate-Specific Antigen</topic><topic>Prostatic Neoplasms - diagnosis</topic><topic>ROC Curve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slate, Elizabeth H.</creatorcontrib><creatorcontrib>Turnbull, Bruce W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slate, Elizabeth H.</au><au>Turnbull, Bruce W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical models for longitudinal biomarkers of disease onset</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2000-02-29</date><risdate>2000</risdate><volume>19</volume><issue>4</issue><spage>617</spage><epage>637</epage><pages>617-637</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10694740</pmid><doi>10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2000-02, Vol.19 (4), p.617-637 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_70941104 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Bayes Theorem Biological and medical sciences Biomarkers Computerized, statistical medical data processing and models in biomedicine Humans Longitudinal Studies Male Medical sciences Medical statistics Models, Statistical Prostate-Specific Antigen Prostatic Neoplasms - diagnosis ROC Curve |
title | Statistical models for longitudinal biomarkers of disease onset |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20models%20for%20longitudinal%20biomarkers%20of%20disease%20onset&rft.jtitle=Statistics%20in%20medicine&rft.au=Slate,%20Elizabeth%20H.&rft.date=2000-02-29&rft.volume=19&rft.issue=4&rft.spage=617&rft.epage=637&rft.pages=617-637&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(20000229)19:4%3C617::AID-SIM360%3E3.0.CO;2-R&rft_dat=%3Cproquest_cross%3E70941104%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70941104&rft_id=info:pmid/10694740&rfr_iscdi=true |