Loading…

Meiotic Instability of CAG Repeat Tracts Occurs by Double-Strand Break Repair in Yeast

Expansion of trinucleotide repeats is associated with a growing number of human diseases. The mechanism and timing of expansion of the repeat tract are poorly understood. In humans, trinucleotide repeats show extreme meiotic instability, and expansion of the repeat tract has been suggested to occur...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2000-02, Vol.97 (5), p.2134-2139
Main Authors: Jankowski, Craig, Nasar, Farooq, Nag, Dilip K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c515t-eff05acc6e1dac59cb59f3f75e8e9b2969cebc5096c07955ad1c87586eaa620f3
cites cdi_FETCH-LOGICAL-c515t-eff05acc6e1dac59cb59f3f75e8e9b2969cebc5096c07955ad1c87586eaa620f3
container_end_page 2139
container_issue 5
container_start_page 2134
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Jankowski, Craig
Nasar, Farooq
Nag, Dilip K.
description Expansion of trinucleotide repeats is associated with a growing number of human diseases. The mechanism and timing of expansion of the repeat tract are poorly understood. In humans, trinucleotide repeats show extreme meiotic instability, and expansion of the repeat tract has been suggested to occur in the germ-line mitotic divisions or postmeiotically during early divisions of the embryo. Studies in model organisms have indicated that polymerase slippage plays a major role in the repeat tract instability and meiotic instability is severalfold higher than the mitotic instability. We show here that meiotic instability of the CAG/CTG repeat tract in yeast is associated with double-strand break (DSB) formation within the repeated sequences, and that the DSB formation is dependent on the meiotic recombination machinery. The DSB repair results in both expansions and contractions of the CAG repeat tract.
doi_str_mv 10.1073/pnas.040460297
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70951303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>122008</jstor_id><sourcerecordid>122008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-eff05acc6e1dac59cb59f3f75e8e9b2969cebc5096c07955ad1c87586eaa620f3</originalsourceid><addsrcrecordid>eNqFkcFrFDEYxYMotlavXkQJHrzN-mUySSbQS121FioFrYKnkMl-o1lnJ2uSEfe_N8uudRXBUw7v95KX9wh5yGDGQPHn69GmGTTQSKi1ukWOGWhWyUbDbXIMUKuqbermiNxLaQkAWrRwlxwxkC1rBDsmH9-iD9k7ejGmbDs_-Lyhoafzs3P6DtdoM72O1uVEr5ybYqLdhr4MUzdg9T5HOy7oi4j265a1PlI_0k9oU75P7vR2SPhgf56QD69fXc_fVJdX5xfzs8vKCSZyhX0PwjonkS2sE9p1Qve8VwJb1F2tpXbYOQFaOlBaCLtgrlWilWitrKHnJ-R0d-966la4cDiWUINZR7-ycWOC9eZPZfRfzOfw3TChpCz2Z3t7DN8mTNmsfHI4DHbEMCWjSmGMA_8vyJQoXTeigE__ApdhimPpwNTAuJCctwWa7SAXQ0oR-5vADMx2VrOd1dzMWgxPDr95gO92LMDjPbA1_pK1MsLUjDcH-f-pm34ahow_cgEf7cBlyiH-fqiuAVr-E8QovwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201356338</pqid></control><display><type>article</type><title>Meiotic Instability of CAG Repeat Tracts Occurs by Double-Strand Break Repair in Yeast</title><source>PubMed Central</source><source>JSTOR</source><creator>Jankowski, Craig ; Nasar, Farooq ; Nag, Dilip K.</creator><creatorcontrib>Jankowski, Craig ; Nasar, Farooq ; Nag, Dilip K.</creatorcontrib><description>Expansion of trinucleotide repeats is associated with a growing number of human diseases. The mechanism and timing of expansion of the repeat tract are poorly understood. In humans, trinucleotide repeats show extreme meiotic instability, and expansion of the repeat tract has been suggested to occur in the germ-line mitotic divisions or postmeiotically during early divisions of the embryo. Studies in model organisms have indicated that polymerase slippage plays a major role in the repeat tract instability and meiotic instability is severalfold higher than the mitotic instability. We show here that meiotic instability of the CAG/CTG repeat tract in yeast is associated with double-strand break (DSB) formation within the repeated sequences, and that the DSB formation is dependent on the meiotic recombination machinery. The DSB repair results in both expansions and contractions of the CAG repeat tract.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.040460297</identifier><identifier>PMID: 10681451</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alcohol Oxidoreductases ; Alleles ; Aminohydrolases ; Biological Sciences ; Chromosomes ; Diploidy ; DNA Damage ; DNA probes ; DNA Repair ; DNA, Fungal ; Fungal Proteins - genetics ; Genetic mutation ; Humans ; Meiosis ; Microsatellite repeats ; Polymerase chain reaction ; Pyrophosphatases ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; Spores ; Transcription Factors - genetics ; Trinucleotide Repeats ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-02, Vol.97 (5), p.2134-2139</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 29, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-eff05acc6e1dac59cb59f3f75e8e9b2969cebc5096c07955ad1c87586eaa620f3</citedby><cites>FETCH-LOGICAL-c515t-eff05acc6e1dac59cb59f3f75e8e9b2969cebc5096c07955ad1c87586eaa620f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/122008$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/122008$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10681451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jankowski, Craig</creatorcontrib><creatorcontrib>Nasar, Farooq</creatorcontrib><creatorcontrib>Nag, Dilip K.</creatorcontrib><title>Meiotic Instability of CAG Repeat Tracts Occurs by Double-Strand Break Repair in Yeast</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Expansion of trinucleotide repeats is associated with a growing number of human diseases. The mechanism and timing of expansion of the repeat tract are poorly understood. In humans, trinucleotide repeats show extreme meiotic instability, and expansion of the repeat tract has been suggested to occur in the germ-line mitotic divisions or postmeiotically during early divisions of the embryo. Studies in model organisms have indicated that polymerase slippage plays a major role in the repeat tract instability and meiotic instability is severalfold higher than the mitotic instability. We show here that meiotic instability of the CAG/CTG repeat tract in yeast is associated with double-strand break (DSB) formation within the repeated sequences, and that the DSB formation is dependent on the meiotic recombination machinery. The DSB repair results in both expansions and contractions of the CAG repeat tract.</description><subject>Alcohol Oxidoreductases</subject><subject>Alleles</subject><subject>Aminohydrolases</subject><subject>Biological Sciences</subject><subject>Chromosomes</subject><subject>Diploidy</subject><subject>DNA Damage</subject><subject>DNA probes</subject><subject>DNA Repair</subject><subject>DNA, Fungal</subject><subject>Fungal Proteins - genetics</subject><subject>Genetic mutation</subject><subject>Humans</subject><subject>Meiosis</subject><subject>Microsatellite repeats</subject><subject>Polymerase chain reaction</subject><subject>Pyrophosphatases</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Spores</subject><subject>Transcription Factors - genetics</subject><subject>Trinucleotide Repeats</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkcFrFDEYxYMotlavXkQJHrzN-mUySSbQS121FioFrYKnkMl-o1lnJ2uSEfe_N8uudRXBUw7v95KX9wh5yGDGQPHn69GmGTTQSKi1ukWOGWhWyUbDbXIMUKuqbermiNxLaQkAWrRwlxwxkC1rBDsmH9-iD9k7ejGmbDs_-Lyhoafzs3P6DtdoM72O1uVEr5ybYqLdhr4MUzdg9T5HOy7oi4j265a1PlI_0k9oU75P7vR2SPhgf56QD69fXc_fVJdX5xfzs8vKCSZyhX0PwjonkS2sE9p1Qve8VwJb1F2tpXbYOQFaOlBaCLtgrlWilWitrKHnJ-R0d-966la4cDiWUINZR7-ycWOC9eZPZfRfzOfw3TChpCz2Z3t7DN8mTNmsfHI4DHbEMCWjSmGMA_8vyJQoXTeigE__ApdhimPpwNTAuJCctwWa7SAXQ0oR-5vADMx2VrOd1dzMWgxPDr95gO92LMDjPbA1_pK1MsLUjDcH-f-pm34ahow_cgEf7cBlyiH-fqiuAVr-E8QovwQ</recordid><startdate>20000229</startdate><enddate>20000229</enddate><creator>Jankowski, Craig</creator><creator>Nasar, Farooq</creator><creator>Nag, Dilip K.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000229</creationdate><title>Meiotic Instability of CAG Repeat Tracts Occurs by Double-Strand Break Repair in Yeast</title><author>Jankowski, Craig ; Nasar, Farooq ; Nag, Dilip K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-eff05acc6e1dac59cb59f3f75e8e9b2969cebc5096c07955ad1c87586eaa620f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alcohol Oxidoreductases</topic><topic>Alleles</topic><topic>Aminohydrolases</topic><topic>Biological Sciences</topic><topic>Chromosomes</topic><topic>Diploidy</topic><topic>DNA Damage</topic><topic>DNA probes</topic><topic>DNA Repair</topic><topic>DNA, Fungal</topic><topic>Fungal Proteins - genetics</topic><topic>Genetic mutation</topic><topic>Humans</topic><topic>Meiosis</topic><topic>Microsatellite repeats</topic><topic>Polymerase chain reaction</topic><topic>Pyrophosphatases</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Spores</topic><topic>Transcription Factors - genetics</topic><topic>Trinucleotide Repeats</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankowski, Craig</creatorcontrib><creatorcontrib>Nasar, Farooq</creatorcontrib><creatorcontrib>Nag, Dilip K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankowski, Craig</au><au>Nasar, Farooq</au><au>Nag, Dilip K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meiotic Instability of CAG Repeat Tracts Occurs by Double-Strand Break Repair in Yeast</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-02-29</date><risdate>2000</risdate><volume>97</volume><issue>5</issue><spage>2134</spage><epage>2139</epage><pages>2134-2139</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Expansion of trinucleotide repeats is associated with a growing number of human diseases. The mechanism and timing of expansion of the repeat tract are poorly understood. In humans, trinucleotide repeats show extreme meiotic instability, and expansion of the repeat tract has been suggested to occur in the germ-line mitotic divisions or postmeiotically during early divisions of the embryo. Studies in model organisms have indicated that polymerase slippage plays a major role in the repeat tract instability and meiotic instability is severalfold higher than the mitotic instability. We show here that meiotic instability of the CAG/CTG repeat tract in yeast is associated with double-strand break (DSB) formation within the repeated sequences, and that the DSB formation is dependent on the meiotic recombination machinery. The DSB repair results in both expansions and contractions of the CAG repeat tract.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10681451</pmid><doi>10.1073/pnas.040460297</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-02, Vol.97 (5), p.2134-2139
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_70951303
source PubMed Central; JSTOR
subjects Alcohol Oxidoreductases
Alleles
Aminohydrolases
Biological Sciences
Chromosomes
Diploidy
DNA Damage
DNA probes
DNA Repair
DNA, Fungal
Fungal Proteins - genetics
Genetic mutation
Humans
Meiosis
Microsatellite repeats
Polymerase chain reaction
Pyrophosphatases
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
Spores
Transcription Factors - genetics
Trinucleotide Repeats
Yeasts
title Meiotic Instability of CAG Repeat Tracts Occurs by Double-Strand Break Repair in Yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meiotic%20Instability%20of%20CAG%20Repeat%20Tracts%20Occurs%20by%20Double-Strand%20Break%20Repair%20in%20Yeast&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jankowski,%20Craig&rft.date=2000-02-29&rft.volume=97&rft.issue=5&rft.spage=2134&rft.epage=2139&rft.pages=2134-2139&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.040460297&rft_dat=%3Cjstor_proqu%3E122008%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-eff05acc6e1dac59cb59f3f75e8e9b2969cebc5096c07955ad1c87586eaa620f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201356338&rft_id=info:pmid/10681451&rft_jstor_id=122008&rfr_iscdi=true