Loading…

RAFTK/Pyk2-mediated cellular signalling

Intracellular signal transduction following extracellular ligation by a wide variety of surface molecules involves the activation and tyrosine phosphorylation of protein tyrosine kinases (PTKs). Tyrosine phosphorylation, controlled by the coordinated actions of protein tyrosine phosphatases (PTPs) a...

Full description

Saved in:
Bibliographic Details
Published in:Cellular Signalling 2000-03, Vol.12 (3), p.123-133
Main Authors: Avraham, Hava, Park, Shin-Young, Schinkmann, Karin, Avraham, Shalom
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intracellular signal transduction following extracellular ligation by a wide variety of surface molecules involves the activation and tyrosine phosphorylation of protein tyrosine kinases (PTKs). Tyrosine phosphorylation, controlled by the coordinated actions of protein tyrosine phosphatases (PTPs) and tyrosine kinases, is a critical regulatory mechanism for various physiological processes, including cell growth, differentiation, metabolism, cell cycle regulation and cytoskeleton function. The focal adhesion PTK family consists of the focal adhesion kinase (FAK) and the RAFTK/Pyk2 kinase (also known as CAK-β and CADTK). RAFTK/Pyk2 can be activated by a variety of extracellular signals that elevate intracellular calcium concentration, and by stress signals. RAFTK/Pyk2 is expressed mainly in the central nervous system and in cells derived from hematopoietic lineages, while FAK is widely expressed in various tissues and links transmembrane integrin receptors to intracellular pathways. This review describes the role of RAFTK/Pyk2 in various signalling cascades and details the differential signalling by FAK and RAFTK/Pyk2.
ISSN:0898-6568
1873-3913
DOI:10.1016/S0898-6568(99)00076-5