Loading…

Cbfa1 Is a Positive Regulatory Factor in Chondrocyte Maturation

Cbfa1 is a transcription factor that belongs to the runt domain gene family. Cbfa1-deficient mice showed a complete lack of bone formation due to the maturational arrest of osteoblasts, demonstrating that Cbfa1 is an essential factor for osteoblast differentiation. Further, chondrocyte maturation wa...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-03, Vol.275 (12), p.8695-8702
Main Authors: Enomoto, Hirayuki, Enomoto-Iwamoto, Motomi, Iwamoto, Masahiro, Nomura, Shintaro, Himeno, Miki, Kitamura, Yukihiko, Kishimoto, Tadamitsu, Komori, Toshihisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cbfa1 is a transcription factor that belongs to the runt domain gene family. Cbfa1-deficient mice showed a complete lack of bone formation due to the maturational arrest of osteoblasts, demonstrating that Cbfa1 is an essential factor for osteoblast differentiation. Further, chondrocyte maturation was severely disturbed in Cbfa1-deficient mice. In this study, we examined the possibility that Cbfa1 is also involved in the regulation of chondrocyte differentiation. mRNAs for both Cbfa1 isotypes, type I Cbfa1 (Pebp2αA/Cbfa1) and type II Cbfa1 (Osf2/Cbfa1 or til-1), which are different in N-terminal domain, were expressed in terminal hypertrophic chondrocytes as well as osteoblasts. In addition, mRNA for type I Cbfa1 was expressed in other hypertrophic chondrocytes and prehypertrophic chondropcytes. In a chondrogenic cell line, ATDC5, the expression of type I Cbfa1 was elevated prior to differentiation to the hypertrophic phenotype, which is characterized by type X collagen expression. Treatment with antisense oligonucleotides for type I Cbfa1 severely reduced type X collagen expression in ATDC5 cells. Retrovirally forced expression of either type I or type II Cbfa1 in chick immature chondrocytes induced type X collagen and MMP13 expression, alkaline phosphatase activity, and extensive cartilage-matrix mineralization. These results indicate that Cbfa1 is an important regulatory factor in chondrocyte maturation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.275.12.8695