Loading…
The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus
Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which pl...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2000-03, Vol.97 (7), p.3538-3543 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913 |
---|---|
cites | cdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913 |
container_end_page | 3543 |
container_issue | 7 |
container_start_page | 3538 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 97 |
creator | Servant, Pascale Grandvalet, Cosette Mazodier, Philippe |
description | Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation. |
doi_str_mv | 10.1073/pnas.97.7.3538 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71006671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>121928</jstor_id><sourcerecordid>121928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</originalsourceid><addsrcrecordid>eNp9kUFv1DAUhC0EokvhygWBIg6VOCQ820lsS1xWVWErrQTqliOynOwLyZKNUzup6L-vQxZYeuAUaeabN3KGkJcUEgqCv-874xMlEpHwjMtHZEFB0ThPFTwmCwAmYpmy9IQ8834HACqT8JSchCjNRQoL8u26xuiqxmV0hb1D762LLn00BDU4bm89dpNmq1_aavOFymiFZog2tS1_hJTvbecxarpoMzjsB7u_K9FHpi1G_5w8qUzr8cXhe0q-fry4Pl_F68-fLs-X67hMOZcxy3OO2ZZJqTKWMVUYVlZlDopLIwWjKAzLeFammKZVVolCUNxKYapCMlkpyk_Jh_luPxZ73JbYDc60unfN3rg7bU2j_3W6ptbf7a2mORNZiL-b4_WD0Gq51pMGnKZAJdxOVWeHKmdvRvSD3je-xLY1HdrRa0EB8lxM4NsH4M6Orgu_QTOgnOfhZICSGSqd9d5h9aeegp4G1tPAWgkt9DRwCLw5fukRPi8agNcHYAr-to8PnP3P19XYtgP-HAL4agZ3frDubxGjikl-D48awKE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201336140</pqid></control><display><type>article</type><title>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Servant, Pascale ; Grandvalet, Cosette ; Mazodier, Philippe</creator><creatorcontrib>Servant, Pascale ; Grandvalet, Cosette ; Mazodier, Philippe</creatorcontrib><description>Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.97.7.3538</identifier><identifier>PMID: 10716740</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Bacteria ; Bacterial Proteins ; Base Sequence ; Biochemistry, Molecular Biology ; Biological Sciences ; Circular Dichroism ; DNA ; DNA, Bacterial ; Gels ; Genes ; Heat-Shock Proteins - physiology ; Heat-Shock Response ; High temperature ; Life Sciences ; Microbiology ; Molecular Sequence Data ; Oligonucleotides ; Promoter regions ; Promoter Regions, Genetic ; Protein Conformation ; Proteins ; Repetitive Sequences, Nucleic Acid ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - physiology ; Rheas ; Shock heating ; Spectroscopy ; Streptomyces - physiology ; Temperature ; Thermoregulation ; Transcription, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (7), p.3538-3543</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 28, 2000</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</citedby><cites>FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</cites><orcidid>0000-0002-1687-455X ; 0000-0002-7167-1085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/121928$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/121928$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10716740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03140180$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Servant, Pascale</creatorcontrib><creatorcontrib>Grandvalet, Cosette</creatorcontrib><creatorcontrib>Mazodier, Philippe</creatorcontrib><title>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.</description><subject>Amino Acid Sequence</subject><subject>Bacteria</subject><subject>Bacterial Proteins</subject><subject>Base Sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Circular Dichroism</subject><subject>DNA</subject><subject>DNA, Bacterial</subject><subject>Gels</subject><subject>Genes</subject><subject>Heat-Shock Proteins - physiology</subject><subject>Heat-Shock Response</subject><subject>High temperature</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Oligonucleotides</subject><subject>Promoter regions</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - physiology</subject><subject>Rheas</subject><subject>Shock heating</subject><subject>Spectroscopy</subject><subject>Streptomyces - physiology</subject><subject>Temperature</subject><subject>Thermoregulation</subject><subject>Transcription, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAUhC0EokvhygWBIg6VOCQ820lsS1xWVWErrQTqliOynOwLyZKNUzup6L-vQxZYeuAUaeabN3KGkJcUEgqCv-874xMlEpHwjMtHZEFB0ThPFTwmCwAmYpmy9IQ8834HACqT8JSchCjNRQoL8u26xuiqxmV0hb1D762LLn00BDU4bm89dpNmq1_aavOFymiFZog2tS1_hJTvbecxarpoMzjsB7u_K9FHpi1G_5w8qUzr8cXhe0q-fry4Pl_F68-fLs-X67hMOZcxy3OO2ZZJqTKWMVUYVlZlDopLIwWjKAzLeFammKZVVolCUNxKYapCMlkpyk_Jh_luPxZ73JbYDc60unfN3rg7bU2j_3W6ptbf7a2mORNZiL-b4_WD0Gq51pMGnKZAJdxOVWeHKmdvRvSD3je-xLY1HdrRa0EB8lxM4NsH4M6Orgu_QTOgnOfhZICSGSqd9d5h9aeegp4G1tPAWgkt9DRwCLw5fukRPi8agNcHYAr-to8PnP3P19XYtgP-HAL4agZ3frDubxGjikl-D48awKE</recordid><startdate>20000328</startdate><enddate>20000328</enddate><creator>Servant, Pascale</creator><creator>Grandvalet, Cosette</creator><creator>Mazodier, Philippe</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1687-455X</orcidid><orcidid>https://orcid.org/0000-0002-7167-1085</orcidid></search><sort><creationdate>20000328</creationdate><title>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</title><author>Servant, Pascale ; Grandvalet, Cosette ; Mazodier, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Bacteria</topic><topic>Bacterial Proteins</topic><topic>Base Sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Circular Dichroism</topic><topic>DNA</topic><topic>DNA, Bacterial</topic><topic>Gels</topic><topic>Genes</topic><topic>Heat-Shock Proteins - physiology</topic><topic>Heat-Shock Response</topic><topic>High temperature</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Oligonucleotides</topic><topic>Promoter regions</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - physiology</topic><topic>Rheas</topic><topic>Shock heating</topic><topic>Spectroscopy</topic><topic>Streptomyces - physiology</topic><topic>Temperature</topic><topic>Thermoregulation</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Servant, Pascale</creatorcontrib><creatorcontrib>Grandvalet, Cosette</creatorcontrib><creatorcontrib>Mazodier, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Servant, Pascale</au><au>Grandvalet, Cosette</au><au>Mazodier, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-03-28</date><risdate>2000</risdate><volume>97</volume><issue>7</issue><spage>3538</spage><epage>3543</epage><pages>3538-3543</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10716740</pmid><doi>10.1073/pnas.97.7.3538</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1687-455X</orcidid><orcidid>https://orcid.org/0000-0002-7167-1085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (7), p.3538-3543 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_71006671 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | Amino Acid Sequence Bacteria Bacterial Proteins Base Sequence Biochemistry, Molecular Biology Biological Sciences Circular Dichroism DNA DNA, Bacterial Gels Genes Heat-Shock Proteins - physiology Heat-Shock Response High temperature Life Sciences Microbiology Molecular Sequence Data Oligonucleotides Promoter regions Promoter Regions, Genetic Protein Conformation Proteins Repetitive Sequences, Nucleic Acid Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - physiology Rheas Shock heating Spectroscopy Streptomyces - physiology Temperature Thermoregulation Transcription, Genetic |
title | The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20RheA%20Repressor%20Is%20the%20Thermosensor%20of%20the%20HSP18%20Heat%20Shock%20Response%20in%20Streptomyces%20albus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Servant,%20Pascale&rft.date=2000-03-28&rft.volume=97&rft.issue=7&rft.spage=3538&rft.epage=3543&rft.pages=3538-3543&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.97.7.3538&rft_dat=%3Cjstor_proqu%3E121928%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201336140&rft_id=info:pmid/10716740&rft_jstor_id=121928&rfr_iscdi=true |