Loading…

The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus

Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which pl...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2000-03, Vol.97 (7), p.3538-3543
Main Authors: Servant, Pascale, Grandvalet, Cosette, Mazodier, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913
cites cdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913
container_end_page 3543
container_issue 7
container_start_page 3538
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Servant, Pascale
Grandvalet, Cosette
Mazodier, Philippe
description Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.
doi_str_mv 10.1073/pnas.97.7.3538
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71006671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>121928</jstor_id><sourcerecordid>121928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</originalsourceid><addsrcrecordid>eNp9kUFv1DAUhC0EokvhygWBIg6VOCQ820lsS1xWVWErrQTqliOynOwLyZKNUzup6L-vQxZYeuAUaeabN3KGkJcUEgqCv-874xMlEpHwjMtHZEFB0ThPFTwmCwAmYpmy9IQ8834HACqT8JSchCjNRQoL8u26xuiqxmV0hb1D762LLn00BDU4bm89dpNmq1_aavOFymiFZog2tS1_hJTvbecxarpoMzjsB7u_K9FHpi1G_5w8qUzr8cXhe0q-fry4Pl_F68-fLs-X67hMOZcxy3OO2ZZJqTKWMVUYVlZlDopLIwWjKAzLeFammKZVVolCUNxKYapCMlkpyk_Jh_luPxZ73JbYDc60unfN3rg7bU2j_3W6ptbf7a2mORNZiL-b4_WD0Gq51pMGnKZAJdxOVWeHKmdvRvSD3je-xLY1HdrRa0EB8lxM4NsH4M6Orgu_QTOgnOfhZICSGSqd9d5h9aeegp4G1tPAWgkt9DRwCLw5fukRPi8agNcHYAr-to8PnP3P19XYtgP-HAL4agZ3frDubxGjikl-D48awKE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201336140</pqid></control><display><type>article</type><title>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Servant, Pascale ; Grandvalet, Cosette ; Mazodier, Philippe</creator><creatorcontrib>Servant, Pascale ; Grandvalet, Cosette ; Mazodier, Philippe</creatorcontrib><description>Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.97.7.3538</identifier><identifier>PMID: 10716740</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Bacteria ; Bacterial Proteins ; Base Sequence ; Biochemistry, Molecular Biology ; Biological Sciences ; Circular Dichroism ; DNA ; DNA, Bacterial ; Gels ; Genes ; Heat-Shock Proteins - physiology ; Heat-Shock Response ; High temperature ; Life Sciences ; Microbiology ; Molecular Sequence Data ; Oligonucleotides ; Promoter regions ; Promoter Regions, Genetic ; Protein Conformation ; Proteins ; Repetitive Sequences, Nucleic Acid ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - physiology ; Rheas ; Shock heating ; Spectroscopy ; Streptomyces - physiology ; Temperature ; Thermoregulation ; Transcription, Genetic</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (7), p.3538-3543</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 28, 2000</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</citedby><cites>FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</cites><orcidid>0000-0002-1687-455X ; 0000-0002-7167-1085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/121928$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/121928$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10716740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03140180$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Servant, Pascale</creatorcontrib><creatorcontrib>Grandvalet, Cosette</creatorcontrib><creatorcontrib>Mazodier, Philippe</creatorcontrib><title>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.</description><subject>Amino Acid Sequence</subject><subject>Bacteria</subject><subject>Bacterial Proteins</subject><subject>Base Sequence</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Circular Dichroism</subject><subject>DNA</subject><subject>DNA, Bacterial</subject><subject>Gels</subject><subject>Genes</subject><subject>Heat-Shock Proteins - physiology</subject><subject>Heat-Shock Response</subject><subject>High temperature</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Oligonucleotides</subject><subject>Promoter regions</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - physiology</subject><subject>Rheas</subject><subject>Shock heating</subject><subject>Spectroscopy</subject><subject>Streptomyces - physiology</subject><subject>Temperature</subject><subject>Thermoregulation</subject><subject>Transcription, Genetic</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAUhC0EokvhygWBIg6VOCQ820lsS1xWVWErrQTqliOynOwLyZKNUzup6L-vQxZYeuAUaeabN3KGkJcUEgqCv-874xMlEpHwjMtHZEFB0ThPFTwmCwAmYpmy9IQ8834HACqT8JSchCjNRQoL8u26xuiqxmV0hb1D762LLn00BDU4bm89dpNmq1_aavOFymiFZog2tS1_hJTvbecxarpoMzjsB7u_K9FHpi1G_5w8qUzr8cXhe0q-fry4Pl_F68-fLs-X67hMOZcxy3OO2ZZJqTKWMVUYVlZlDopLIwWjKAzLeFammKZVVolCUNxKYapCMlkpyk_Jh_luPxZ73JbYDc60unfN3rg7bU2j_3W6ptbf7a2mORNZiL-b4_WD0Gq51pMGnKZAJdxOVWeHKmdvRvSD3je-xLY1HdrRa0EB8lxM4NsH4M6Orgu_QTOgnOfhZICSGSqd9d5h9aeegp4G1tPAWgkt9DRwCLw5fukRPi8agNcHYAr-to8PnP3P19XYtgP-HAL4agZ3frDubxGjikl-D48awKE</recordid><startdate>20000328</startdate><enddate>20000328</enddate><creator>Servant, Pascale</creator><creator>Grandvalet, Cosette</creator><creator>Mazodier, Philippe</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1687-455X</orcidid><orcidid>https://orcid.org/0000-0002-7167-1085</orcidid></search><sort><creationdate>20000328</creationdate><title>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</title><author>Servant, Pascale ; Grandvalet, Cosette ; Mazodier, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Bacteria</topic><topic>Bacterial Proteins</topic><topic>Base Sequence</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Circular Dichroism</topic><topic>DNA</topic><topic>DNA, Bacterial</topic><topic>Gels</topic><topic>Genes</topic><topic>Heat-Shock Proteins - physiology</topic><topic>Heat-Shock Response</topic><topic>High temperature</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Oligonucleotides</topic><topic>Promoter regions</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - physiology</topic><topic>Rheas</topic><topic>Shock heating</topic><topic>Spectroscopy</topic><topic>Streptomyces - physiology</topic><topic>Temperature</topic><topic>Thermoregulation</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Servant, Pascale</creatorcontrib><creatorcontrib>Grandvalet, Cosette</creatorcontrib><creatorcontrib>Mazodier, Philippe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Servant, Pascale</au><au>Grandvalet, Cosette</au><au>Mazodier, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-03-28</date><risdate>2000</risdate><volume>97</volume><issue>7</issue><spage>3538</spage><epage>3543</epage><pages>3538-3543</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Microorganisms have mechanisms to sense their environment and rapidly adapt to survive changes in conditions. In Streptomyces albus, various transcriptional repressors mediate the induction of heat shock genes. The RheA repressor regulates the synthesis of HSP18, a small heat shock protein, which plays a role in thermotolerance. The RheA protein was purified to determine how it responds rapidly to temperature. Gel retardation assays and foot-printing experiments identified the specific target of RheA as an inverted repeat (TGTCATC 5N GATGACA) located in Phsp18, PrheA which is the common promoter region of the divergon. Gel retardation assays detected RheA-complexes formed with the hsp18-rheA promoters. The complexes did not form at higher temperature. In vitro transcription experiments showed that RheA is an autoregulatory protein and that its activity is inhibited by high temperature. The temperature-induced derepression by RheA is reversible. Dichroism circular spectroscopy revealed a reversible change of RheA conformation in relation with the temperature that could represent a transition between an active and an inactive form. Our experiments demonstrate that RheA acts as a cellular thermometer in hsp18 regulation.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10716740</pmid><doi>10.1073/pnas.97.7.3538</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1687-455X</orcidid><orcidid>https://orcid.org/0000-0002-7167-1085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-03, Vol.97 (7), p.3538-3543
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_71006671
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Amino Acid Sequence
Bacteria
Bacterial Proteins
Base Sequence
Biochemistry, Molecular Biology
Biological Sciences
Circular Dichroism
DNA
DNA, Bacterial
Gels
Genes
Heat-Shock Proteins - physiology
Heat-Shock Response
High temperature
Life Sciences
Microbiology
Molecular Sequence Data
Oligonucleotides
Promoter regions
Promoter Regions, Genetic
Protein Conformation
Proteins
Repetitive Sequences, Nucleic Acid
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - physiology
Rheas
Shock heating
Spectroscopy
Streptomyces - physiology
Temperature
Thermoregulation
Transcription, Genetic
title The RheA Repressor Is the Thermosensor of the HSP18 Heat Shock Response in Streptomyces albus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20RheA%20Repressor%20Is%20the%20Thermosensor%20of%20the%20HSP18%20Heat%20Shock%20Response%20in%20Streptomyces%20albus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Servant,%20Pascale&rft.date=2000-03-28&rft.volume=97&rft.issue=7&rft.spage=3538&rft.epage=3543&rft.pages=3538-3543&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.97.7.3538&rft_dat=%3Cjstor_proqu%3E121928%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4338-2663e5d288952529ba2cfc60938a8721e7a2535c4e44f5f7b71ed87afb828f913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201336140&rft_id=info:pmid/10716740&rft_jstor_id=121928&rfr_iscdi=true