Loading…
Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519
PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) in SJL mice is a Th1-mediated autoimmune demyelinating disease model for multiple sclerosis (MS) in which the primary disease relapse is mediated by T cells specific for the endogenous PLP178-191 epitope. This complex inf...
Saved in:
Published in: | Journal of autoimmunity 2000-05, Vol.14 (3), p.205-211 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) in SJL mice is a Th1-mediated autoimmune demyelinating disease model for multiple sclerosis (MS) in which the primary disease relapse is mediated by T cells specific for the endogenous PLP178-191 epitope. This complex inflammatory process requires the co-ordinated expression of a wide variety of immune-related genes active at a variety of stages of the autoimmune process which are regulated, in part, by the transcription factor nuclear factor (NF)-kappaB which is activated via the ubiquitin-proteasome pathway. We asked if in vivo administration of a selective inhibitor of the ubiquitin-proteasome pathway, PS-519, which downregulates activation of NF-kappaB, could downregulate ongoing R-EAE. Administration of PS-519 during the remission phase, following acute clinical disease was effective in significantly reducing the incidence of clinical relapses, CNS histopathology, and T cell responses to both the initiating and relapse-associated PLP epitopes. The inhibition of clinical disease was dependent upon continuous administration of PS-519 in that recovery of T cell function and onset of disease relapses developed within 10-14 days of drug withdrawal. The data suggest that targeting the ubiquitin proteasome pathway, in particular NF-kappaB, may offer a novel and efficacious approach for the treatment of progressive autoimmune diseases, including MS. |
---|---|
ISSN: | 0896-8411 1095-9157 |
DOI: | 10.1006/jaut.2000.0370 |