Loading…
Synthesis, spectroscopic characterization and ESR studies on electron transfer reactions of bis[N-(2,6-di-tert-butyl-1-hydroxyphenyl)salicylaldiminato]-copper(II) complexes with PbO2 and PPh3
New bis[N-(2,6-di-t-butyl-1-hydroxyphenyl)salicylideneminato]copper(II) complexes bearing HO and CH3O substituents on the salicyaldehyde moiety were prepared, and their spectroscopic properties, as well as redox reactivity towards PbO2 and PPh3, examined by ESR and UV spectroscopy. In the process of...
Saved in:
Published in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2001-07, Vol.57 (8), p.1649-1662 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | New bis[N-(2,6-di-t-butyl-1-hydroxyphenyl)salicylideneminato]copper(II) complexes bearing HO and CH3O substituents on the salicyaldehyde moiety were prepared, and their spectroscopic properties, as well as redox reactivity towards PbO2 and PPh3, examined by ESR and UV spectroscopy. In the process of synthesis of HO complexes unlike CH3O the oxidative C-C coupling of coordinated salicylaldimine ligands does not takes place. The powder ESR spectra of CH3O substituted complexes unlike of HO analogues are typical of a triplet state Cu(II) dimers with a half-field forbidden (deltaM = +/- 2) transition and the allowed transitions (AM = +/- 1) dimeric form of the complexes at 300 and 113 K. The one-electron oxidation of 3-CH3O and all of the OH complexes with PbO2 to give indophenoxyl type secondary radicals which are significantly different from those observed for analogues Cl, Br and NO2 substituted chelates. The presented complexes unlike their electron-withdrawing analogues are readily reduced by PPh3 via intramolecular electron transfer from ligand to copper(II) to give various radical intermediates as well as Cu(I) radical ligand compounds. The analysis of ESR spectra all of the complexes and radical intermediates are presented. |
---|---|
ISSN: | 1386-1425 |
DOI: | 10.1016/S1386-1425(01)00400-0 |