Loading…

Nerve Growth Factor-induced Neuronal Differentiation Requires Generation of Rac1-regulated Reactive Oxygen Species

Nerve growth factor (NGF) stimulation of pheochromocytoma PC12 cells transiently increased the intracellular concentration of reactive oxygen species (ROS). This increase was blocked by the chemical antioxidant N-acetylcysteine and a flavoprotein inhibitor, diphenylene iodonium. NGF responses of PC1...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-05, Vol.275 (18), p.13175-13178
Main Authors: Suzukawa, Kazumi, Miura, Koichi, Mitsushita, Junji, Resau, James, Hirose, Kunitaka, Crystal, Ronald, Kamata, Tohru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nerve growth factor (NGF) stimulation of pheochromocytoma PC12 cells transiently increased the intracellular concentration of reactive oxygen species (ROS). This increase was blocked by the chemical antioxidant N-acetylcysteine and a flavoprotein inhibitor, diphenylene iodonium. NGF responses of PC12 cells, including neurite outgrowth, tyrosine phosphorylation, and AP-1 activation, was inhibited when ROS production was prevented byN-acetylcysteine and diphenylene iodonium. The expression of dominant negative Rac1N17 blocked induction of both ROS generation and morphological differentiation by NGF. The ROS produced appears to be H2O2, because the introduction of catalase into the cells abolished NGF-induced neurite outgrowth, ROS production, and tyrosine phosphorylation. These results suggest that the ROS, perhaps H2O2, acts as an intracellular signal mediator for NGF-induced neuronal differentiation and that NGF-stimulated ROS production is regulated by Rac1 and a flavoprotein-binding protein similar to the phagocytic NADPH oxidase.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.275.18.13175