Loading…

The effect of nisin on the physiology of Bifidobacterium thermophilum

The effects of nisin on lactate accumulation, growth, and Fe(III) binding by Bifidobacterium thermophilum (ATCC 25866) and Bifidobacterium breve (ATCC 15700) were investigated. Nisin inhibited lactate production by B. thermophilum at concentrations of less than 1 microg/ml, but this effect could be...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food protection 2001-08, Vol.64 (8), p.1206-1210
Main Authors: KOT, Eva, MURAD, Yanal, BEZKOROVAINY, Anatoly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of nisin on lactate accumulation, growth, and Fe(III) binding by Bifidobacterium thermophilum (ATCC 25866) and Bifidobacterium breve (ATCC 15700) were investigated. Nisin inhibited lactate production by B. thermophilum at concentrations of less than 1 microg/ml, but this effect could be largely eliminated by pretreatment of the organism with 100 to 400 microM Al(III) or La(III). Nisin also inhibited the growth of B. thermophilum at concentrations of 2 to 3 microg/ml, with lower concentrations showing lag periods and/or slower rates of growth. However, Al(III) could not negate these effects, most likely because of Al(III) chelation by the trypticase-proteose-yeast extract medium. Nisin was able to increase instantaneous Fe(III) binding by both B. thermophilum and B. breve, though prolonged-time experiments (up to 120 min) with B. thermophilum indicated no difference in total Fe(III) bound. Nisin was thus able to increase the free radical reaction rate with bifidobacteria and the resultant rate of Fe(III) binding. It was concluded that nisin will normally inhibit the metabolic activity of B. thermophilum along with that of certain bacterial pathogens; however, this effect may in some instances, be abated by a pretreatment with Al(III). Moreover, by accelerating free radical action and the binding of iron by bifidobacteria, nisin may be able to potentiate their normal probiotic action.
ISSN:0362-028X
1944-9097
DOI:10.4315/0362-028X-64.8.1206