Loading…

Inducible nitric oxide synthase-derived nitric oxide in gene regulation, cell death and cell survival

Studies from many laboratories have demonstrated the complex role of NO in inflammatory processes. Prolonged exposure to NO shifts the cellular redox potential to a more oxidized state and this is critically regulated by intracellular levels of reduced glutathione. NO-mediated stress will alter gene...

Full description

Saved in:
Bibliographic Details
Published in:International Immunopharmacology 2001-08, Vol.1 (8), p.1407-1420
Main Authors: Kröncke, Klaus-Dietrich, Fehsel, Karin, Suschek, Christoph, Kolb-Bachofen, Victoria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Studies from many laboratories have demonstrated the complex role of NO in inflammatory processes. Prolonged exposure to NO shifts the cellular redox potential to a more oxidized state and this is critically regulated by intracellular levels of reduced glutathione. NO-mediated stress will alter gene expression patterns, and the number of genes known to be involved is steadily increasing. Indeed, due to its S-nitrosating activity in the presence of oxygen, NO can modify the activity of transcription factors containing zinc finger motifs or cysteines within the DNA-binding domain. In addition, we are faced with not only NO acting as a powerful inducer of apoptosis or of necrosis in some cells, but also representing an equally powerful protection from cell death in many instances. Some of these apparent discrepancies may be explained by different capacities of cells to cope with the stress of NO exposure. Here, we review our findings on the complex impact of NO on transcriptional regulation of genes, cell death and cell survival. These NO-mediated actions will contribute to a better understanding of the impact of inducible nitric oxide synthase (iNOS) enzyme activity during inflammatory reactions.
ISSN:1567-5769
1878-1705
DOI:10.1016/S1567-5769(01)00087-X