Loading…

Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations

The velocity fields of turbulent jets can be described using a single formula which includes two empirical constants: k core determining the length of the central core and k turb the jet widening. Flow models simulating jet adhesion, confinement and noncircular orifices were studied using laser Dopp...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2000-06, Vol.33 (6), p.677-684
Main Authors: Diebold, Benoit, Delouche, Annie, Decesare, Alain, Delouche, Philippe, Guglielmi, Jean-paul, Herment, Alain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-f92a950e8d89d251d7f9575dd05c88619e6f3145c6ee72b1ad054ba01f0fed283
cites cdi_FETCH-LOGICAL-c392t-f92a950e8d89d251d7f9575dd05c88619e6f3145c6ee72b1ad054ba01f0fed283
container_end_page 684
container_issue 6
container_start_page 677
container_title Journal of biomechanics
container_volume 33
creator Diebold, Benoit
Delouche, Annie
Decesare, Alain
Delouche, Philippe
Guglielmi, Jean-paul
Herment, Alain
description The velocity fields of turbulent jets can be described using a single formula which includes two empirical constants: k core determining the length of the central core and k turb the jet widening. Flow models simulating jet adhesion, confinement and noncircular orifices were studied using laser Doppler anemometer and the modifications of the constants were derived from series of velocity profiles. In circular free jets, k core was found equal to 4.1 with a variability of 1.4%. In complex configurations, its variability was equal to 15.2%. For k turb, the value for free circular jets was of 45.2 with a variability of 6.0% and this variability in complex configurations was significantly higher (30.1%, p=0.025). The correlation between the actual orifice size and the jet extension was poor ( r=0.52). However, the almost constant value of k core allowed to define a new algorithm calculating the regurgitant orifice diameter with the use of outlines of the jet image ( r=0.89). In conclusion, the fluid mechanics of regurgitant jets is modified in complex configurations but, due to the relative independency of the central core, velocity fields could be used to evaluate the dimensions of the effective regurgitant orifice.
doi_str_mv 10.1016/S0021-9290(00)00005-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71113967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929000000051</els_id><sourcerecordid>71113967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f92a950e8d89d251d7f9575dd05c88619e6f3145c6ee72b1ad054ba01f0fed283</originalsourceid><addsrcrecordid>eNqFkV9LHTEQxYNU6q3tR7DkqdiH1Zns3U3yJCJaC0Ifap9DbjLRyP65JrtS_fTN9YrUJ4fAMOR3ZuAcxg4QjhCwPf4NILDSQsMhwHco1VS4wxaoZF2JWsEHtnhF9tinnO8KI5dSf2R7CAqkVmrBni66OXrek7u1Q3SZj4EnupnTTZzsMPE7mjK3g-fOdm7u7BTHYcNMt8QpBHJTfKA3ijHFEB3xOPCQiMrM3divO_pb-hBiIZ-35M9sN9gu05eXvs_-XJxfn11WV79-_Dw7vapcrcVUBS2sboCUV9qLBr0MupGN99A4pVrU1IYal41riaRYoS0fy5UFDBDIC1Xvs2_bves03s-UJ9PH7Kjr7EDjnI1ExFq38l1Q4LKUbgvYbEGXxpwTBbNOsbfp0SCYTTrmOR2zsd7A5pV0DBbd15cD86on_59qG0cBTrYAFT8eIiWTXaTBkY-pWG38GN858Q-tyaDX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21444496</pqid></control><display><type>article</type><title>Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations</title><source>ScienceDirect Freedom Collection</source><creator>Diebold, Benoit ; Delouche, Annie ; Decesare, Alain ; Delouche, Philippe ; Guglielmi, Jean-paul ; Herment, Alain</creator><creatorcontrib>Diebold, Benoit ; Delouche, Annie ; Decesare, Alain ; Delouche, Philippe ; Guglielmi, Jean-paul ; Herment, Alain</creatorcontrib><description>The velocity fields of turbulent jets can be described using a single formula which includes two empirical constants: k core determining the length of the central core and k turb the jet widening. Flow models simulating jet adhesion, confinement and noncircular orifices were studied using laser Doppler anemometer and the modifications of the constants were derived from series of velocity profiles. In circular free jets, k core was found equal to 4.1 with a variability of 1.4%. In complex configurations, its variability was equal to 15.2%. For k turb, the value for free circular jets was of 45.2 with a variability of 6.0% and this variability in complex configurations was significantly higher (30.1%, p=0.025). The correlation between the actual orifice size and the jet extension was poor ( r=0.52). However, the almost constant value of k core allowed to define a new algorithm calculating the regurgitant orifice diameter with the use of outlines of the jet image ( r=0.89). In conclusion, the fluid mechanics of regurgitant jets is modified in complex configurations but, due to the relative independency of the central core, velocity fields could be used to evaluate the dimensions of the effective regurgitant orifice.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/S0021-9290(00)00005-1</identifier><identifier>PMID: 10807988</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Anemometers ; Aortic Valve - pathology ; Aortic Valve Insufficiency - physiopathology ; Blood Flow Velocity - physiology ; Flow visualization ; Fluid mechanics ; Hemorheology ; Humans ; Jets ; Laser Doppler ; Laser Doppler velocimeters ; Laser-Doppler Flowmetry ; Mitral Valve - pathology ; Mitral Valve Insufficiency - physiopathology ; Models, Cardiovascular ; Orifices ; Tricuspid Valve - pathology ; Tricuspid Valve Insufficiency - physiopathology ; Turbulence ; Valvular regurgitation ; Velocimetry</subject><ispartof>Journal of biomechanics, 2000-06, Vol.33 (6), p.677-684</ispartof><rights>2000 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f92a950e8d89d251d7f9575dd05c88619e6f3145c6ee72b1ad054ba01f0fed283</citedby><cites>FETCH-LOGICAL-c392t-f92a950e8d89d251d7f9575dd05c88619e6f3145c6ee72b1ad054ba01f0fed283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10807988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diebold, Benoit</creatorcontrib><creatorcontrib>Delouche, Annie</creatorcontrib><creatorcontrib>Decesare, Alain</creatorcontrib><creatorcontrib>Delouche, Philippe</creatorcontrib><creatorcontrib>Guglielmi, Jean-paul</creatorcontrib><creatorcontrib>Herment, Alain</creatorcontrib><title>Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>The velocity fields of turbulent jets can be described using a single formula which includes two empirical constants: k core determining the length of the central core and k turb the jet widening. Flow models simulating jet adhesion, confinement and noncircular orifices were studied using laser Doppler anemometer and the modifications of the constants were derived from series of velocity profiles. In circular free jets, k core was found equal to 4.1 with a variability of 1.4%. In complex configurations, its variability was equal to 15.2%. For k turb, the value for free circular jets was of 45.2 with a variability of 6.0% and this variability in complex configurations was significantly higher (30.1%, p=0.025). The correlation between the actual orifice size and the jet extension was poor ( r=0.52). However, the almost constant value of k core allowed to define a new algorithm calculating the regurgitant orifice diameter with the use of outlines of the jet image ( r=0.89). In conclusion, the fluid mechanics of regurgitant jets is modified in complex configurations but, due to the relative independency of the central core, velocity fields could be used to evaluate the dimensions of the effective regurgitant orifice.</description><subject>Algorithms</subject><subject>Anemometers</subject><subject>Aortic Valve - pathology</subject><subject>Aortic Valve Insufficiency - physiopathology</subject><subject>Blood Flow Velocity - physiology</subject><subject>Flow visualization</subject><subject>Fluid mechanics</subject><subject>Hemorheology</subject><subject>Humans</subject><subject>Jets</subject><subject>Laser Doppler</subject><subject>Laser Doppler velocimeters</subject><subject>Laser-Doppler Flowmetry</subject><subject>Mitral Valve - pathology</subject><subject>Mitral Valve Insufficiency - physiopathology</subject><subject>Models, Cardiovascular</subject><subject>Orifices</subject><subject>Tricuspid Valve - pathology</subject><subject>Tricuspid Valve Insufficiency - physiopathology</subject><subject>Turbulence</subject><subject>Valvular regurgitation</subject><subject>Velocimetry</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkV9LHTEQxYNU6q3tR7DkqdiH1Zns3U3yJCJaC0Ifap9DbjLRyP65JrtS_fTN9YrUJ4fAMOR3ZuAcxg4QjhCwPf4NILDSQsMhwHco1VS4wxaoZF2JWsEHtnhF9tinnO8KI5dSf2R7CAqkVmrBni66OXrek7u1Q3SZj4EnupnTTZzsMPE7mjK3g-fOdm7u7BTHYcNMt8QpBHJTfKA3ijHFEB3xOPCQiMrM3divO_pb-hBiIZ-35M9sN9gu05eXvs_-XJxfn11WV79-_Dw7vapcrcVUBS2sboCUV9qLBr0MupGN99A4pVrU1IYal41riaRYoS0fy5UFDBDIC1Xvs2_bves03s-UJ9PH7Kjr7EDjnI1ExFq38l1Q4LKUbgvYbEGXxpwTBbNOsbfp0SCYTTrmOR2zsd7A5pV0DBbd15cD86on_59qG0cBTrYAFT8eIiWTXaTBkY-pWG38GN858Q-tyaDX</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Diebold, Benoit</creator><creator>Delouche, Annie</creator><creator>Decesare, Alain</creator><creator>Delouche, Philippe</creator><creator>Guglielmi, Jean-paul</creator><creator>Herment, Alain</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000601</creationdate><title>Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations</title><author>Diebold, Benoit ; Delouche, Annie ; Decesare, Alain ; Delouche, Philippe ; Guglielmi, Jean-paul ; Herment, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f92a950e8d89d251d7f9575dd05c88619e6f3145c6ee72b1ad054ba01f0fed283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Anemometers</topic><topic>Aortic Valve - pathology</topic><topic>Aortic Valve Insufficiency - physiopathology</topic><topic>Blood Flow Velocity - physiology</topic><topic>Flow visualization</topic><topic>Fluid mechanics</topic><topic>Hemorheology</topic><topic>Humans</topic><topic>Jets</topic><topic>Laser Doppler</topic><topic>Laser Doppler velocimeters</topic><topic>Laser-Doppler Flowmetry</topic><topic>Mitral Valve - pathology</topic><topic>Mitral Valve Insufficiency - physiopathology</topic><topic>Models, Cardiovascular</topic><topic>Orifices</topic><topic>Tricuspid Valve - pathology</topic><topic>Tricuspid Valve Insufficiency - physiopathology</topic><topic>Turbulence</topic><topic>Valvular regurgitation</topic><topic>Velocimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebold, Benoit</creatorcontrib><creatorcontrib>Delouche, Annie</creatorcontrib><creatorcontrib>Decesare, Alain</creatorcontrib><creatorcontrib>Delouche, Philippe</creatorcontrib><creatorcontrib>Guglielmi, Jean-paul</creatorcontrib><creatorcontrib>Herment, Alain</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebold, Benoit</au><au>Delouche, Annie</au><au>Decesare, Alain</au><au>Delouche, Philippe</au><au>Guglielmi, Jean-paul</au><au>Herment, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>33</volume><issue>6</issue><spage>677</spage><epage>684</epage><pages>677-684</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>The velocity fields of turbulent jets can be described using a single formula which includes two empirical constants: k core determining the length of the central core and k turb the jet widening. Flow models simulating jet adhesion, confinement and noncircular orifices were studied using laser Doppler anemometer and the modifications of the constants were derived from series of velocity profiles. In circular free jets, k core was found equal to 4.1 with a variability of 1.4%. In complex configurations, its variability was equal to 15.2%. For k turb, the value for free circular jets was of 45.2 with a variability of 6.0% and this variability in complex configurations was significantly higher (30.1%, p=0.025). The correlation between the actual orifice size and the jet extension was poor ( r=0.52). However, the almost constant value of k core allowed to define a new algorithm calculating the regurgitant orifice diameter with the use of outlines of the jet image ( r=0.89). In conclusion, the fluid mechanics of regurgitant jets is modified in complex configurations but, due to the relative independency of the central core, velocity fields could be used to evaluate the dimensions of the effective regurgitant orifice.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>10807988</pmid><doi>10.1016/S0021-9290(00)00005-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2000-06, Vol.33 (6), p.677-684
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_71113967
source ScienceDirect Freedom Collection
subjects Algorithms
Anemometers
Aortic Valve - pathology
Aortic Valve Insufficiency - physiopathology
Blood Flow Velocity - physiology
Flow visualization
Fluid mechanics
Hemorheology
Humans
Jets
Laser Doppler
Laser Doppler velocimeters
Laser-Doppler Flowmetry
Mitral Valve - pathology
Mitral Valve Insufficiency - physiopathology
Models, Cardiovascular
Orifices
Tricuspid Valve - pathology
Tricuspid Valve Insufficiency - physiopathology
Turbulence
Valvular regurgitation
Velocimetry
title Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20mechanics%20of%20regurgitant%20jets%20and%20calculation%20of%20the%20effective%20regurgitant%20orifice%20in%20free%20or%20complex%20configurations&rft.jtitle=Journal%20of%20biomechanics&rft.au=Diebold,%20Benoit&rft.date=2000-06-01&rft.volume=33&rft.issue=6&rft.spage=677&rft.epage=684&rft.pages=677-684&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/S0021-9290(00)00005-1&rft_dat=%3Cproquest_cross%3E71113967%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-f92a950e8d89d251d7f9575dd05c88619e6f3145c6ee72b1ad054ba01f0fed283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21444496&rft_id=info:pmid/10807988&rfr_iscdi=true