Loading…

Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat

The cytosolic isoform of plant acetyl-CoA carboxylase is a multidomain enzyme involved in the synthesis of very-long-chain fatty acids and in secondary metabolism. Chromosome mapping of wheat identified one locus containing cytosolic acetyl-CoA carboxylase genes (Acc-2) and a related partially proce...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2001-09, Vol.18 (9), p.1720-1733
Main Authors: Faris, J, Sirikhachornkit, A, Haselkorn, R, Gill, B, Gornicki, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cytosolic isoform of plant acetyl-CoA carboxylase is a multidomain enzyme involved in the synthesis of very-long-chain fatty acids and in secondary metabolism. Chromosome mapping of wheat identified one locus containing cytosolic acetyl-CoA carboxylase genes (Acc-2) and a related partially processed pseudogene (Psi-Acc-2) in the distal region of the long arm of wheat homoeologous group 3 chromosomes. Multiple copies of the Acc-2 genes, whose presence was suggested by sequence analysis, are likely to be arranged in tandem repeats. At least three out of five genes cloned from hexaploid wheat map to this locus. Another locus containing Acc-2--related sequences is present in the distal region of the long arm of chromosome 5D. The identity of the hybridizing DNA present at this locus remains unknown. A system based on PCR-cloning and DNA sequence analysis of acetyl-CoA carboxylase genes was developed to address various phylogenetic and systematics questions in grasses. It was applied to reconstruct the phylogeny of the Acc-2 genes from D- and S-genome Aegilops and A-genome Triticum diploid species, AABB- and AAGG-genome tetraploid wheat, and AABBDD-genome hexaploid wheat, as well as from rye and barley. The combined cytogenetic and molecular evolution approach allowed assignment of gene sequences included in phylogenetic analysis to specific loci on homoeologous chromosomes. Recurring gene duplication followed by chromosome translocation and/or possible loss of some gene copies, as well as loss of introns, occurred in the gene family in different plant lineages. Two major Acc-2 clades appeared before the divergence of barley and rye. Nucleotide substitution rates in different parts of the Acc-2 gene were assessed. This analysis of the Acc-2 loci provides detailed information regarding evolutionary events at a low--copy-number locus containing important functional genes. These events are likely to be common and to play a significant role in shaping grass genomes.
ISSN:0737-4038
1537-1719
DOI:10.1093/oxfordjournals.molbev.a003960