Loading…
Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus
Tetraethylammonium (TEA) induces a form of long-term potentiation (LTP) that is independent on N-methyl- d-aspartate (NMDA) receptor activation (LTP K). LTP K may be a suitable chemical model to study molecular mechanisms underlying LTP. We monitored the phosphorylation state of two identified neura...
Saved in:
Published in: | Neuroscience letters 2000-05, Vol.286 (1), p.53-56 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-cd72bee288fda36d689b0b18a1ea79a19f2c38ff1dd991e9e66043fe8b70284c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-cd72bee288fda36d689b0b18a1ea79a19f2c38ff1dd991e9e66043fe8b70284c3 |
container_end_page | 56 |
container_issue | 1 |
container_start_page | 53 |
container_title | Neuroscience letters |
container_volume | 286 |
creator | Ramakers, Geert M.J. Pasinelli, Piera van Beest, Moniek van der Slot, Annemarie Gispen, Willem-Hendrik De Graan, Pierre N.E. |
description | Tetraethylammonium (TEA) induces a form of long-term potentiation (LTP) that is independent on
N-methyl-
d-aspartate (NMDA) receptor activation (LTP
K). LTP
K may be a suitable chemical model to study molecular mechanisms underlying LTP. We monitored the phosphorylation state of two identified neural-specific protein kinase C (PKC) substrates (the presynaptic protein GAP-43/B-50 and postsynaptic protein RC3) after different chemical depolarisations. TEA induced a long-lasting increase in synaptic efficacy in the CA1 field of the hippocampus and increased the phosphorylation of both GAP-43/B-50 and RC3 (51 and 56.1%, respectively). These effects were blocked by the voltage-dependent calcium channel antagonist nifedipine, but not by the NMDA receptor antagonist AP5. These data show that in LTP
K the in situ phosphorylation of pre-and postsynaptic PKC substrates is increased, indicating that NMDA receptor-dependent and NMDA receptor-independent LTP share common Ca
2+-dependent expression mechanisms, including activation of pre- and postsynaptic PKC. |
doi_str_mv | 10.1016/S0304-3940(00)01081-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71134694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304394000010818</els_id><sourcerecordid>71134694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-cd72bee288fda36d689b0b18a1ea79a19f2c38ff1dd991e9e66043fe8b70284c3</originalsourceid><addsrcrecordid>eNqFkc-K1TAUh4Mozp3RR1CyEBkX1aRN22Qll4v_YMCFug5pcjI32iY1SQfuY_jGpvai7gYCgcN3fuckH0LPKHlNCe3efCENYVUjGLkm5BWhhNOKP0A7yvu66kVfP0S7v8gFukzpOyGkpS17jC4KXde0pTv0a6-zu1PZBY-DxXOECitv8BxSTiev5ux0qYYMzuMfzqsE-IDNEp2_xRlyVJCPp1FNU_BumSrnzaLB4DH42ypDnEpSBp_dNqKE5GNJ2FNsHYxmnbkWjm6eg1bTvKQn6JFVY4Kn5_sKfXv_7uvhY3Xz-cOnw_6m0oz3udKmrweAmnNrVNOZjouBDJQrCqoXigpb64ZbS40RgoKAriOsscCHntSc6eYKvdxyy-t-LpCynFzSMI7KQ1iS7CltWCfYvSDtO9HQlhSw3UAdQ0oRrJyjm1Q8SUrkKk3-kSZXI5KUs0qTvPQ9Pw9YhgnMf12bpQK8OAMqaTXaqLx26R_HCshW7O2GQfm2OwdRJu3AFx0ugs7SBHfPJr8BHaS2DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17693150</pqid></control><display><type>article</type><title>Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus</title><source>Elsevier</source><creator>Ramakers, Geert M.J. ; Pasinelli, Piera ; van Beest, Moniek ; van der Slot, Annemarie ; Gispen, Willem-Hendrik ; De Graan, Pierre N.E.</creator><creatorcontrib>Ramakers, Geert M.J. ; Pasinelli, Piera ; van Beest, Moniek ; van der Slot, Annemarie ; Gispen, Willem-Hendrik ; De Graan, Pierre N.E.</creatorcontrib><description>Tetraethylammonium (TEA) induces a form of long-term potentiation (LTP) that is independent on
N-methyl-
d-aspartate (NMDA) receptor activation (LTP
K). LTP
K may be a suitable chemical model to study molecular mechanisms underlying LTP. We monitored the phosphorylation state of two identified neural-specific protein kinase C (PKC) substrates (the presynaptic protein GAP-43/B-50 and postsynaptic protein RC3) after different chemical depolarisations. TEA induced a long-lasting increase in synaptic efficacy in the CA1 field of the hippocampus and increased the phosphorylation of both GAP-43/B-50 and RC3 (51 and 56.1%, respectively). These effects were blocked by the voltage-dependent calcium channel antagonist nifedipine, but not by the NMDA receptor antagonist AP5. These data show that in LTP
K the in situ phosphorylation of pre-and postsynaptic PKC substrates is increased, indicating that NMDA receptor-dependent and NMDA receptor-independent LTP share common Ca
2+-dependent expression mechanisms, including activation of pre- and postsynaptic PKC.</description><identifier>ISSN: 0304-3940</identifier><identifier>EISSN: 1872-7972</identifier><identifier>DOI: 10.1016/S0304-3940(00)01081-8</identifier><identifier>PMID: 10822151</identifier><identifier>CODEN: NELED5</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>2-Amino-5-phosphonovalerate - pharmacology ; 4-Aminopyridine - pharmacology ; Animals ; Biological and medical sciences ; Ca 2+ channel ; Calcium Channel Blockers - pharmacology ; Calmodulin-Binding Proteins - metabolism ; Central nervous system ; Electrophysiology ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Fundamental and applied biological sciences. Psychology ; GAP-43 Protein - metabolism ; GAP-43/B-50 ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - metabolism ; In Vitro Techniques ; K + channel ; Long-term potentiation ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; Nerve Tissue Proteins - metabolism ; Neurogranin ; Nifedipine - pharmacology ; Phosphorylation ; Potassium Channel Blockers ; Potassium Channels - drug effects ; Potassium Channels - metabolism ; Presynaptic Terminals - drug effects ; Presynaptic Terminals - metabolism ; Presynaptic Terminals - ultrastructure ; Protein kinase C ; Protein Kinase C - drug effects ; Protein Kinase C - metabolism ; Rats ; RC3 ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Synaptic Membranes - drug effects ; Synaptic Membranes - metabolism ; Synaptic Membranes - ultrastructure ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Tetraethylammonium - pharmacology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience letters, 2000-05, Vol.286 (1), p.53-56</ispartof><rights>2000 Elsevier Science Ireland Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-cd72bee288fda36d689b0b18a1ea79a19f2c38ff1dd991e9e66043fe8b70284c3</citedby><cites>FETCH-LOGICAL-c487t-cd72bee288fda36d689b0b18a1ea79a19f2c38ff1dd991e9e66043fe8b70284c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1408241$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10822151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramakers, Geert M.J.</creatorcontrib><creatorcontrib>Pasinelli, Piera</creatorcontrib><creatorcontrib>van Beest, Moniek</creatorcontrib><creatorcontrib>van der Slot, Annemarie</creatorcontrib><creatorcontrib>Gispen, Willem-Hendrik</creatorcontrib><creatorcontrib>De Graan, Pierre N.E.</creatorcontrib><title>Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus</title><title>Neuroscience letters</title><addtitle>Neurosci Lett</addtitle><description>Tetraethylammonium (TEA) induces a form of long-term potentiation (LTP) that is independent on
N-methyl-
d-aspartate (NMDA) receptor activation (LTP
K). LTP
K may be a suitable chemical model to study molecular mechanisms underlying LTP. We monitored the phosphorylation state of two identified neural-specific protein kinase C (PKC) substrates (the presynaptic protein GAP-43/B-50 and postsynaptic protein RC3) after different chemical depolarisations. TEA induced a long-lasting increase in synaptic efficacy in the CA1 field of the hippocampus and increased the phosphorylation of both GAP-43/B-50 and RC3 (51 and 56.1%, respectively). These effects were blocked by the voltage-dependent calcium channel antagonist nifedipine, but not by the NMDA receptor antagonist AP5. These data show that in LTP
K the in situ phosphorylation of pre-and postsynaptic PKC substrates is increased, indicating that NMDA receptor-dependent and NMDA receptor-independent LTP share common Ca
2+-dependent expression mechanisms, including activation of pre- and postsynaptic PKC.</description><subject>2-Amino-5-phosphonovalerate - pharmacology</subject><subject>4-Aminopyridine - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Ca 2+ channel</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calmodulin-Binding Proteins - metabolism</subject><subject>Central nervous system</subject><subject>Electrophysiology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GAP-43 Protein - metabolism</subject><subject>GAP-43/B-50</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>In Vitro Techniques</subject><subject>K + channel</subject><subject>Long-term potentiation</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurogranin</subject><subject>Nifedipine - pharmacology</subject><subject>Phosphorylation</subject><subject>Potassium Channel Blockers</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - metabolism</subject><subject>Presynaptic Terminals - drug effects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Presynaptic Terminals - ultrastructure</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - drug effects</subject><subject>Protein Kinase C - metabolism</subject><subject>Rats</subject><subject>RC3</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Synaptic Membranes - drug effects</subject><subject>Synaptic Membranes - metabolism</subject><subject>Synaptic Membranes - ultrastructure</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Tetraethylammonium - pharmacology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0304-3940</issn><issn>1872-7972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkc-K1TAUh4Mozp3RR1CyEBkX1aRN22Qll4v_YMCFug5pcjI32iY1SQfuY_jGpvai7gYCgcN3fuckH0LPKHlNCe3efCENYVUjGLkm5BWhhNOKP0A7yvu66kVfP0S7v8gFukzpOyGkpS17jC4KXde0pTv0a6-zu1PZBY-DxXOECitv8BxSTiev5ux0qYYMzuMfzqsE-IDNEp2_xRlyVJCPp1FNU_BumSrnzaLB4DH42ypDnEpSBp_dNqKE5GNJ2FNsHYxmnbkWjm6eg1bTvKQn6JFVY4Kn5_sKfXv_7uvhY3Xz-cOnw_6m0oz3udKmrweAmnNrVNOZjouBDJQrCqoXigpb64ZbS40RgoKAriOsscCHntSc6eYKvdxyy-t-LpCynFzSMI7KQ1iS7CltWCfYvSDtO9HQlhSw3UAdQ0oRrJyjm1Q8SUrkKk3-kSZXI5KUs0qTvPQ9Pw9YhgnMf12bpQK8OAMqaTXaqLx26R_HCshW7O2GQfm2OwdRJu3AFx0ugs7SBHfPJr8BHaS2DQ</recordid><startdate>20000526</startdate><enddate>20000526</enddate><creator>Ramakers, Geert M.J.</creator><creator>Pasinelli, Piera</creator><creator>van Beest, Moniek</creator><creator>van der Slot, Annemarie</creator><creator>Gispen, Willem-Hendrik</creator><creator>De Graan, Pierre N.E.</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20000526</creationdate><title>Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus</title><author>Ramakers, Geert M.J. ; Pasinelli, Piera ; van Beest, Moniek ; van der Slot, Annemarie ; Gispen, Willem-Hendrik ; De Graan, Pierre N.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-cd72bee288fda36d689b0b18a1ea79a19f2c38ff1dd991e9e66043fe8b70284c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>2-Amino-5-phosphonovalerate - pharmacology</topic><topic>4-Aminopyridine - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Ca 2+ channel</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calmodulin-Binding Proteins - metabolism</topic><topic>Central nervous system</topic><topic>Electrophysiology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GAP-43 Protein - metabolism</topic><topic>GAP-43/B-50</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>In Vitro Techniques</topic><topic>K + channel</topic><topic>Long-term potentiation</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurogranin</topic><topic>Nifedipine - pharmacology</topic><topic>Phosphorylation</topic><topic>Potassium Channel Blockers</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - metabolism</topic><topic>Presynaptic Terminals - drug effects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Presynaptic Terminals - ultrastructure</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - drug effects</topic><topic>Protein Kinase C - metabolism</topic><topic>Rats</topic><topic>RC3</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Synaptic Membranes - drug effects</topic><topic>Synaptic Membranes - metabolism</topic><topic>Synaptic Membranes - ultrastructure</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Tetraethylammonium - pharmacology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramakers, Geert M.J.</creatorcontrib><creatorcontrib>Pasinelli, Piera</creatorcontrib><creatorcontrib>van Beest, Moniek</creatorcontrib><creatorcontrib>van der Slot, Annemarie</creatorcontrib><creatorcontrib>Gispen, Willem-Hendrik</creatorcontrib><creatorcontrib>De Graan, Pierre N.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramakers, Geert M.J.</au><au>Pasinelli, Piera</au><au>van Beest, Moniek</au><au>van der Slot, Annemarie</au><au>Gispen, Willem-Hendrik</au><au>De Graan, Pierre N.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus</atitle><jtitle>Neuroscience letters</jtitle><addtitle>Neurosci Lett</addtitle><date>2000-05-26</date><risdate>2000</risdate><volume>286</volume><issue>1</issue><spage>53</spage><epage>56</epage><pages>53-56</pages><issn>0304-3940</issn><eissn>1872-7972</eissn><coden>NELED5</coden><abstract>Tetraethylammonium (TEA) induces a form of long-term potentiation (LTP) that is independent on
N-methyl-
d-aspartate (NMDA) receptor activation (LTP
K). LTP
K may be a suitable chemical model to study molecular mechanisms underlying LTP. We monitored the phosphorylation state of two identified neural-specific protein kinase C (PKC) substrates (the presynaptic protein GAP-43/B-50 and postsynaptic protein RC3) after different chemical depolarisations. TEA induced a long-lasting increase in synaptic efficacy in the CA1 field of the hippocampus and increased the phosphorylation of both GAP-43/B-50 and RC3 (51 and 56.1%, respectively). These effects were blocked by the voltage-dependent calcium channel antagonist nifedipine, but not by the NMDA receptor antagonist AP5. These data show that in LTP
K the in situ phosphorylation of pre-and postsynaptic PKC substrates is increased, indicating that NMDA receptor-dependent and NMDA receptor-independent LTP share common Ca
2+-dependent expression mechanisms, including activation of pre- and postsynaptic PKC.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>10822151</pmid><doi>10.1016/S0304-3940(00)01081-8</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3940 |
ispartof | Neuroscience letters, 2000-05, Vol.286 (1), p.53-56 |
issn | 0304-3940 1872-7972 |
language | eng |
recordid | cdi_proquest_miscellaneous_71134694 |
source | Elsevier |
subjects | 2-Amino-5-phosphonovalerate - pharmacology 4-Aminopyridine - pharmacology Animals Biological and medical sciences Ca 2+ channel Calcium Channel Blockers - pharmacology Calmodulin-Binding Proteins - metabolism Central nervous system Electrophysiology Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials - drug effects Excitatory Postsynaptic Potentials - physiology Fundamental and applied biological sciences. Psychology GAP-43 Protein - metabolism GAP-43/B-50 Hippocampus - cytology Hippocampus - drug effects Hippocampus - metabolism In Vitro Techniques K + channel Long-term potentiation Long-Term Potentiation - drug effects Long-Term Potentiation - physiology Nerve Tissue Proteins - metabolism Neurogranin Nifedipine - pharmacology Phosphorylation Potassium Channel Blockers Potassium Channels - drug effects Potassium Channels - metabolism Presynaptic Terminals - drug effects Presynaptic Terminals - metabolism Presynaptic Terminals - ultrastructure Protein kinase C Protein Kinase C - drug effects Protein Kinase C - metabolism Rats RC3 Signal Transduction - drug effects Signal Transduction - physiology Synaptic Membranes - drug effects Synaptic Membranes - metabolism Synaptic Membranes - ultrastructure Synaptic Transmission - drug effects Synaptic Transmission - physiology Tetraethylammonium - pharmacology Vertebrates: nervous system and sense organs |
title | Activation of pre- and postsynaptic protein kinase C during tetraethylammonium-induced long-term potentiation in the CA1 field of the hippocampus |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20pre-%20and%20postsynaptic%20protein%20kinase%20C%20during%20tetraethylammonium-induced%20long-term%20potentiation%20in%20the%20CA1%20field%20of%20the%20hippocampus&rft.jtitle=Neuroscience%20letters&rft.au=Ramakers,%20Geert%20M.J.&rft.date=2000-05-26&rft.volume=286&rft.issue=1&rft.spage=53&rft.epage=56&rft.pages=53-56&rft.issn=0304-3940&rft.eissn=1872-7972&rft.coden=NELED5&rft_id=info:doi/10.1016/S0304-3940(00)01081-8&rft_dat=%3Cproquest_cross%3E71134694%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-cd72bee288fda36d689b0b18a1ea79a19f2c38ff1dd991e9e66043fe8b70284c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17693150&rft_id=info:pmid/10822151&rfr_iscdi=true |