Loading…

Modulation of c-jun and c-fos Transcription by UVB and UVA Radiations in Human Dermal Fibroblasts and KB Cells

We have previously demonstrated that the oxidizing component of ultraviolet-A (UVA) plays a central role in the activation of the nuclear oncogene and transcription factor, c-fos, in cultured human skin fibroblasts. We have now shown that expression of both c-jun and c-fos (AP-1) family of transcrip...

Full description

Saved in:
Bibliographic Details
Published in:Photochemistry and photobiology 2000-05, Vol.71 (5), p.551-558
Main Authors: Soriani, Marco, Hejmadi, Vidya, Tyrrell, Rex M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have previously demonstrated that the oxidizing component of ultraviolet-A (UVA) plays a central role in the activation of the nuclear oncogene and transcription factor, c-fos, in cultured human skin fibroblasts. We have now shown that expression of both c-jun and c-fos (AP-1) family of transcription factors is modulated by short and long wavelength solar ultraviolet (UV) radiation in human fibroblasts and human KB cells. UVA radiation activated c-jun and c-fos in both fibroblasts and KB cells, whereas ultraviolet-B (UVB) radiation activates such oncogenes only in KB cells. Moreover, decreasing the intracellular levels of reducing equivalents in human fibroblasts by glutathione (GSH) depletion lowered the UVA dose threshold for c-jun and c-fos activation several-fold and greatly amplified the UVA-mediated activation of such genes. A more modest effect was observed in GSH-depleted KB cells. In both GSH-depleted fibroblasts and KB cells, UVB radiation failed to amplify c-jun and c-fos activation indicating that the oxidative component of UVB plays a minor role in the modulation of such oncogene expression. These findings clearly indicate that both c-jun and c-fos are activated by the oxidizing component of UVA radiation in human fibroblasts and KB cells, while UVB-mediated modulation seems to be restricted to human epithelial cells and does not involve oxidizing intermediates.
ISSN:0031-8655
1751-1097
DOI:10.1562/0031-8655(2000)071<0551:MOCJAC>2.0.CO;2