Loading…

Increasing the effective resolution of thermal infrared images

Thermal infrared (TIR) imaging is recognized as the most efficient technique for the study of skin temperature distribution. In specific diseases, characteristic changes can be measured from target anatomical sites. In this way, objective noninvasive investigations can be of diagnostic value. TIR im...

Full description

Saved in:
Bibliographic Details
Published in:IEEE engineering in medicine and biology magazine 2000-05, Vol.19 (3), p.63-70
Main Authors: Snyder, W.E., Qi, H., Elliott, R.L., Head, J.F., Wang, C.X.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thermal infrared (TIR) imaging is recognized as the most efficient technique for the study of skin temperature distribution. In specific diseases, characteristic changes can be measured from target anatomical sites. In this way, objective noninvasive investigations can be of diagnostic value. TIR imaging of the breast for breast cancer risk assessment is an example. Although TIR imaging possesses the advantages of being noninvasive, risk free, and considerably less expensive, it suffers the disadvantage of a lack of resolution due to blur compounded by rather high levels of noise. A maximum a posteriori probability (MAP) image restoration philosophy is proposed to solve this problem of resolution. The objective is three-fold: to increase the resolution of the measured image by using a type of 2:1 zooming; to remove the noise; and simultaneously to preserve the detail of features, including, in particular, the sharpness of edges.
ISSN:0739-5175
1937-4186
DOI:10.1109/51.844382