Loading…

Time course of chromatic adaptation for color appearance and discrimination

Adaptation to a steady background has a profound effect on both color appearance and discrimination. We determined the temporal characteristics of chromatic adaptation for appearance and discrimination along different color directions. Subjects were adapted to a large uniform background made up of a...

Full description

Saved in:
Bibliographic Details
Published in:Vision research (Oxford) 2000-01, Vol.40 (14), p.1813-1826
Main Authors: Rinner, Oliver, Gegenfurtner, Karl R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adaptation to a steady background has a profound effect on both color appearance and discrimination. We determined the temporal characteristics of chromatic adaptation for appearance and discrimination along different color directions. Subjects were adapted to a large uniform background made up of a CRT screen and a 45×64° wall, illuminated by computer controlled lamps. After an instant change in background color along a red–green or blue–yellow color axis, we measured thresholds for the detection of increments along the same axes at fixed times between 25 ms and 121 s. Analogously, color appearance was determined using achromatic matching. Three components of adaptation could be identified by their temporal characteristics. A slow exponential time course of adaptation with a half-life of about 20 s was common to appearance and discrimination. A faster component with a half-life of 40–70 ms — probably due to photoreceptor adaptation — was also common to both. Exclusive for color appearance, there was a third, extremely rapid mechanism with a half-life faster than 10 ms. This instantaneous process explained more than 50% of total adaptation for color appearance and could be shown to act in a multiplicative manner. We conclude that this instantaneous adaptation mechanism for color appearance is situated at a later processing stage, after mechanisms common to appearance and discrimination, and is based on multiplicative spatial interactions rather than on local, temporal adaptational processes. Color appearance, and thus color constancy, seems to be determined in large part by cortical computations.
ISSN:0042-6989
1878-5646
DOI:10.1016/S0042-6989(00)00050-X