Loading…

Chloroplast Protein Translocon Components atToc159 and atToc33 Are Not Essential for Chloroplast Biogenesis in Guard Cells and Root Cells

Protein import into chloroplasts is mediated by a protein import apparatus located in the chloroplast envelope. Previous results indicate that there may be multiple import complexes in Arabidopsis. To gain further insight into the nature of this multiplicity, we analyzed the Arabidopsis ppi1 and ppi...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2001-09, Vol.127 (1), p.90-96
Main Authors: Yu, Tien-Shin, Li, Hsou-min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein import into chloroplasts is mediated by a protein import apparatus located in the chloroplast envelope. Previous results indicate that there may be multiple import complexes in Arabidopsis. To gain further insight into the nature of this multiplicity, we analyzed the Arabidopsis ppi1 and ppi2 mutants, which are null mutants of the atToc33 and atToc159 translocon proteins, respectively. In the ppi2 mutant, in contrast to the extremely defective plastids in mesophyll cells, chloroplasts in guard cells still contained starch granules and thylakoid membranes. The morphology of root plastids in both mutants was similar to that in wild type. After prolonged light treatments, root plastids of both mutants and the wild type differentiated into chloroplasts. Enzymatic assays indicated that the activity of a plastid enzyme was reduced only in leaves but not in roots. These results indicated that both the ppi1 and ppi2 mutants had functional root and guard cell plastids. Therefore, we propose that import complexes are cell type specific rather than substrate or plastid specific.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.127.1.90