Loading…

Dynamic Hyperinflation and Exercise Intolerance in Chronic Obstructive Pulmonary Disease

The role of dynamic hyperinflation (DH) in exercise limitation in chronic obstructive pulmonary disease (COPD) remains to be defined. We examined DH during exercise in 105 patients with COPD (FEV(1) = 37 +/- 13% predicted; mean +/- SD) and studied the relationships between resting lung volumes, DH d...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory and critical care medicine 2001-09, Vol.164 (5), p.770-777
Main Authors: O'DONNELL, DENIS E, REVILL, SUSAN M, WEBB, KATHERINE A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of dynamic hyperinflation (DH) in exercise limitation in chronic obstructive pulmonary disease (COPD) remains to be defined. We examined DH during exercise in 105 patients with COPD (FEV(1) = 37 +/- 13% predicted; mean +/- SD) and studied the relationships between resting lung volumes, DH during exercise, and peak oxygen consumption (VO(2)). Patients completed pulmonary function tests and incremental cycle exercise tests. We measured the change in inspiratory capacity (Delta IC) during exercise to reflect changes in DH. During exercise, 80% of patients showed significant DH above resting values. IC decreased 0.37 +/- 0.39 L or 14 +/- 15% predicted during exercise (p < 0.0005), but with large variation in range. Delta IC correlated best with resting IC, both expressed %predicted (r = -0.50, p < 0.0005). Peak VO(2) (%predicted maximum) correlated best with the peak tidal volume attained (VT standardized as % of predicted vital capacity) (r = 0.68, p < 0.0005), which, in turn, correlated strongly with IC at peak exercise (r = 0.79, p < 0.0005) or at rest (r = 0.75, p < 0.0005). The extent of DH during exercise in COPD correlated best with resting IC. DH curtailed the VT response to exercise. This inability to expand VT in response to increasing metabolic demand contributed importantly to exercise intolerance in COPD.
ISSN:1073-449X
1535-4970
DOI:10.1164/ajrccm.164.5.2012122