Loading…

Human Osteoblastic Cells Propagate Intercellular Calcium Signals by Two Different Mechanisms

Effective bone remodeling requires the coordination of bone matrix deposition by osteoblastic cells, which may occur via soluble mediators or via direct intercellular communication. We have previously identified two mechanisms by which rat osteoblastic cell lines coordinate calcium signaling among c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bone and mineral research 2000-06, Vol.15 (6), p.1024-1032
Main Authors: Jørgensen, Niklas R., Henriksen, Zanne, Brot, Christine, Eriksen, Erik F., Sørensen, Ole H., Civitelli, Roberto, Steinberg, Thomas H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effective bone remodeling requires the coordination of bone matrix deposition by osteoblastic cells, which may occur via soluble mediators or via direct intercellular communication. We have previously identified two mechanisms by which rat osteoblastic cell lines coordinate calcium signaling among cells: autocrine activation of P2 (purinergic) receptors leading to release of intracellular calcium stores, and gap junction‐mediated communication resulting in influx of extracellular calcium. In the current work we asked whether human osteoblastic cells (HOB) were capable of mechanically induced intercellular calcium signaling, and if so, by which mechanisms. Upon mechanical stimulation, human osteoblasts propagated fast intercellular calcium waves, which required activation of P2 receptors and release of intracellular calcium stores but did not require calcium influx or gap junctional communication. After the fast intercellular calcium waves were blocked, we observed slower calcium waves that were dependent on gap junctional communication and influx of extracellular calcium. These results show that human osteoblastic cells can propagate calcium signals from cell to cell by two markedly different mechanisms and suggest that these two pathways may serve different purposes in coordinating osteoblast functions.
ISSN:0884-0431
1523-4681
DOI:10.1359/jbmr.2000.15.6.1024