Loading…
Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans
We apply a recently developed multivariate statistical data analysis technique-so called blind source separation (BSS) by independent component analysis-to process magnetoencephalogram recordings of near-DC fields. The extraction of near-DC fields from MEG recordings has great relevance for medical...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2000-05, Vol.47 (5), p.594-599 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply a recently developed multivariate statistical data analysis technique-so called blind source separation (BSS) by independent component analysis-to process magnetoencephalogram recordings of near-DC fields. The extraction of near-DC fields from MEG recordings has great relevance for medical applications since slowly varying DC-phenomena have been found, e.g., in cerebral anoxia and spreading depression in animals. Comparing several BSS approaches, it turns out that an algorithm based on temporal decorrelation successfully extracted a DC-component which was induced in the auditory cortex by presentation of music. The task is challenging because of the limited amount of available data and the corruption by outliers, which makes it an interesting real-world testbed for studying the robustness of ICA methods. |
---|---|
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/10.841331 |