Loading…

Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans

We apply a recently developed multivariate statistical data analysis technique-so called blind source separation (BSS) by independent component analysis-to process magnetoencephalogram recordings of near-DC fields. The extraction of near-DC fields from MEG recordings has great relevance for medical...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2000-05, Vol.47 (5), p.594-599
Main Authors: Wubbeler, G., Ziehe, A., Mackert, B.-M., Muller, K.-R., Trahms, L., Curio, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-617cdf7b5c4da9de4664e8e183f58dee62b23cd94a57ae34fb64a5d5206710e33
cites cdi_FETCH-LOGICAL-c485t-617cdf7b5c4da9de4664e8e183f58dee62b23cd94a57ae34fb64a5d5206710e33
container_end_page 599
container_issue 5
container_start_page 594
container_title IEEE transactions on biomedical engineering
container_volume 47
creator Wubbeler, G.
Ziehe, A.
Mackert, B.-M.
Muller, K.-R.
Trahms, L.
Curio, C.
description We apply a recently developed multivariate statistical data analysis technique-so called blind source separation (BSS) by independent component analysis-to process magnetoencephalogram recordings of near-DC fields. The extraction of near-DC fields from MEG recordings has great relevance for medical applications since slowly varying DC-phenomena have been found, e.g., in cerebral anoxia and spreading depression in animals. Comparing several BSS approaches, it turns out that an algorithm based on temporal decorrelation successfully extracted a DC-component which was induced in the auditory cortex by presentation of music. The task is challenging because of the limited amount of available data and the corruption by outliers, which makes it an interesting real-world testbed for studying the robustness of ICA methods.
doi_str_mv 10.1109/10.841331
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71181437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>841331</ieee_id><sourcerecordid>2435166971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-617cdf7b5c4da9de4664e8e183f58dee62b23cd94a57ae34fb64a5d5206710e33</originalsourceid><addsrcrecordid>eNqN0UFrFTEQAOAgin2tHrx6kKVIi4fVzCbZnT2W11oLBS96dclLZm3KbvJM3hbevzfLPlR6UC-ZCfmYDDOMvQL-HoC3H3JECULAE7YCpbCslICnbMU5YNlWrTxixynd56tEWT9nR8BRAXKxYt9uvKUt5cPvChPGbfBzpr0e9smlIvSFD975B53cAw37IpIJ0ZLNOO6c0UMx6u-eclpcrsve0WBT4XxxN43apxfsWa-HRC8P8YR9_Xj1Zf2pvP18fbO-uC2NRLUra2iM7ZuNMtLq1pKsa0lIgKJXaInqalMJY1upVaNJyH5T59SqitcNcBLihJ0vdbcx_Jgo7brRJUPDoD2FKXWICCBQVFme_VU2AAhSNP-EVR45_y8IEmoh5iZPH8H7MMU86bk_VQmJHDN6tyATQ0qR-m4b3ajjvgPezdue47LtbN8cCk6bkewfcllvBm8PQKe8qj5qb1z67YRsFMwzeb0wR0S_Xg-f_ASdkbiD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885234808</pqid></control><display><type>article</type><title>Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans</title><source>IEEE Xplore (Online service)</source><creator>Wubbeler, G. ; Ziehe, A. ; Mackert, B.-M. ; Muller, K.-R. ; Trahms, L. ; Curio, C.</creator><creatorcontrib>Wubbeler, G. ; Ziehe, A. ; Mackert, B.-M. ; Muller, K.-R. ; Trahms, L. ; Curio, C.</creatorcontrib><description>We apply a recently developed multivariate statistical data analysis technique-so called blind source separation (BSS) by independent component analysis-to process magnetoencephalogram recordings of near-DC fields. The extraction of near-DC fields from MEG recordings has great relevance for medical applications since slowly varying DC-phenomena have been found, e.g., in cerebral anoxia and spreading depression in animals. Comparing several BSS approaches, it turns out that an algorithm based on temporal decorrelation successfully extracted a DC-component which was induced in the auditory cortex by presentation of music. The task is challenging because of the limited amount of available data and the corruption by outliers, which makes it an interesting real-world testbed for studying the robustness of ICA methods.</description><identifier>ISSN: 0018-9294</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/10.841331</identifier><identifier>PMID: 10851803</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic Stimulation ; Algorithms ; Auditory Cortex - physiology ; Bioelectric potentials ; Biological and medical sciences ; Blind source separation ; Data analysis ; Data mining ; Evoked Potentials, Auditory - physiology ; Feature extraction ; Humans ; Independent component analysis ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic analysis ; Magnetic recording ; Magnetic separation ; Magnetoencephalography ; Medical sciences ; Medical services ; Nervous system ; Neurophysiology ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Signal Processing, Computer-Assisted ; Source separation ; Statistical methods</subject><ispartof>IEEE transactions on biomedical engineering, 2000-05, Vol.47 (5), p.594-599</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-617cdf7b5c4da9de4664e8e183f58dee62b23cd94a57ae34fb64a5d5206710e33</citedby><cites>FETCH-LOGICAL-c485t-617cdf7b5c4da9de4664e8e183f58dee62b23cd94a57ae34fb64a5d5206710e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/841331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1347512$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10851803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wubbeler, G.</creatorcontrib><creatorcontrib>Ziehe, A.</creatorcontrib><creatorcontrib>Mackert, B.-M.</creatorcontrib><creatorcontrib>Muller, K.-R.</creatorcontrib><creatorcontrib>Trahms, L.</creatorcontrib><creatorcontrib>Curio, C.</creatorcontrib><title>Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>We apply a recently developed multivariate statistical data analysis technique-so called blind source separation (BSS) by independent component analysis-to process magnetoencephalogram recordings of near-DC fields. The extraction of near-DC fields from MEG recordings has great relevance for medical applications since slowly varying DC-phenomena have been found, e.g., in cerebral anoxia and spreading depression in animals. Comparing several BSS approaches, it turns out that an algorithm based on temporal decorrelation successfully extracted a DC-component which was induced in the auditory cortex by presentation of music. The task is challenging because of the limited amount of available data and the corruption by outliers, which makes it an interesting real-world testbed for studying the robustness of ICA methods.</description><subject>Acoustic Stimulation</subject><subject>Algorithms</subject><subject>Auditory Cortex - physiology</subject><subject>Bioelectric potentials</subject><subject>Biological and medical sciences</subject><subject>Blind source separation</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Evoked Potentials, Auditory - physiology</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic analysis</subject><subject>Magnetic recording</subject><subject>Magnetic separation</subject><subject>Magnetoencephalography</subject><subject>Medical sciences</subject><subject>Medical services</subject><subject>Nervous system</subject><subject>Neurophysiology</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Source separation</subject><subject>Statistical methods</subject><issn>0018-9294</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqN0UFrFTEQAOAgin2tHrx6kKVIi4fVzCbZnT2W11oLBS96dclLZm3KbvJM3hbevzfLPlR6UC-ZCfmYDDOMvQL-HoC3H3JECULAE7YCpbCslICnbMU5YNlWrTxixynd56tEWT9nR8BRAXKxYt9uvKUt5cPvChPGbfBzpr0e9smlIvSFD975B53cAw37IpIJ0ZLNOO6c0UMx6u-eclpcrsve0WBT4XxxN43apxfsWa-HRC8P8YR9_Xj1Zf2pvP18fbO-uC2NRLUra2iM7ZuNMtLq1pKsa0lIgKJXaInqalMJY1upVaNJyH5T59SqitcNcBLihJ0vdbcx_Jgo7brRJUPDoD2FKXWICCBQVFme_VU2AAhSNP-EVR45_y8IEmoh5iZPH8H7MMU86bk_VQmJHDN6tyATQ0qR-m4b3ajjvgPezdue47LtbN8cCk6bkewfcllvBm8PQKe8qj5qb1z67YRsFMwzeb0wR0S_Xg-f_ASdkbiD</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Wubbeler, G.</creator><creator>Ziehe, A.</creator><creator>Mackert, B.-M.</creator><creator>Muller, K.-R.</creator><creator>Trahms, L.</creator><creator>Curio, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans</title><author>Wubbeler, G. ; Ziehe, A. ; Mackert, B.-M. ; Muller, K.-R. ; Trahms, L. ; Curio, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-617cdf7b5c4da9de4664e8e183f58dee62b23cd94a57ae34fb64a5d5206710e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acoustic Stimulation</topic><topic>Algorithms</topic><topic>Auditory Cortex - physiology</topic><topic>Bioelectric potentials</topic><topic>Biological and medical sciences</topic><topic>Blind source separation</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Evoked Potentials, Auditory - physiology</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic analysis</topic><topic>Magnetic recording</topic><topic>Magnetic separation</topic><topic>Magnetoencephalography</topic><topic>Medical sciences</topic><topic>Medical services</topic><topic>Nervous system</topic><topic>Neurophysiology</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Source separation</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wubbeler, G.</creatorcontrib><creatorcontrib>Ziehe, A.</creatorcontrib><creatorcontrib>Mackert, B.-M.</creatorcontrib><creatorcontrib>Muller, K.-R.</creatorcontrib><creatorcontrib>Trahms, L.</creatorcontrib><creatorcontrib>Curio, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wubbeler, G.</au><au>Ziehe, A.</au><au>Mackert, B.-M.</au><au>Muller, K.-R.</au><au>Trahms, L.</au><au>Curio, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>47</volume><issue>5</issue><spage>594</spage><epage>599</epage><pages>594-599</pages><issn>0018-9294</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>We apply a recently developed multivariate statistical data analysis technique-so called blind source separation (BSS) by independent component analysis-to process magnetoencephalogram recordings of near-DC fields. The extraction of near-DC fields from MEG recordings has great relevance for medical applications since slowly varying DC-phenomena have been found, e.g., in cerebral anoxia and spreading depression in animals. Comparing several BSS approaches, it turns out that an algorithm based on temporal decorrelation successfully extracted a DC-component which was induced in the auditory cortex by presentation of music. The task is challenging because of the limited amount of available data and the corruption by outliers, which makes it an interesting real-world testbed for studying the robustness of ICA methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>10851803</pmid><doi>10.1109/10.841331</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2000-05, Vol.47 (5), p.594-599
issn 0018-9294
1558-2531
language eng
recordid cdi_proquest_miscellaneous_71181437
source IEEE Xplore (Online service)
subjects Acoustic Stimulation
Algorithms
Auditory Cortex - physiology
Bioelectric potentials
Biological and medical sciences
Blind source separation
Data analysis
Data mining
Evoked Potentials, Auditory - physiology
Feature extraction
Humans
Independent component analysis
Investigative techniques, diagnostic techniques (general aspects)
Magnetic analysis
Magnetic recording
Magnetic separation
Magnetoencephalography
Medical sciences
Medical services
Nervous system
Neurophysiology
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Signal Processing, Computer-Assisted
Source separation
Statistical methods
title Independent component analysis of noninvasively recorded cortical magnetic DC-fields in humans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20component%20analysis%20of%20noninvasively%20recorded%20cortical%20magnetic%20DC-fields%20in%20humans&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Wubbeler,%20G.&rft.date=2000-05-01&rft.volume=47&rft.issue=5&rft.spage=594&rft.epage=599&rft.pages=594-599&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/10.841331&rft_dat=%3Cproquest_pubme%3E2435166971%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-617cdf7b5c4da9de4664e8e183f58dee62b23cd94a57ae34fb64a5d5206710e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885234808&rft_id=info:pmid/10851803&rft_ieee_id=841331&rfr_iscdi=true