Loading…
Antigen-Specific Modulation of an Immune Response by In Vivo Administration of Soluble MHC Class I Tetramers
Soluble MHC/peptide tetramers that can directly bind the TCR allow the direct visualization and quantitation of Ag-specific T cells in vitro and in vivo. We used HY-D(b) tetramers to assess the numbers of HY-reactive CD8+ T cells in HYTCR-transgenic mice and in naive, wild-type C57BL/6 (B6) mice. As...
Saved in:
Published in: | The Journal of immunology (1950) 2001-10, Vol.167 (7), p.3708-3714 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soluble MHC/peptide tetramers that can directly bind the TCR allow the direct visualization and quantitation of Ag-specific T cells in vitro and in vivo. We used HY-D(b) tetramers to assess the numbers of HY-reactive CD8+ T cells in HYTCR-transgenic mice and in naive, wild-type C57BL/6 (B6) mice. As expected, tetramer staining showed the majority of T cells were male-specific CD8+ T cells in female HY-TCR mice. Staining of B6 mice showed a small population of male-specific CD8+ T cells in female mice. The effect of administration of soluble MHC class I tetramers on CD8+ T cell activation in vivo was unknown. Injection of HY-D(b) tetramer in vivo effectively primed female mice for a more rapid proliferative response to both HY peptide and male splenocytes. Furthermore, wild-type B6 female mice injected with a single dose of HY-D(b) tetramer rejected B6 male skin grafts more rapidly than female littermates treated with irrelevant tetramer. In contrast, multiple doses of HY-D(b) tetramer did not further decrease graft survival. Rather, female B6 mice injected with multiple doses of HY-D(b) tetramer rejected male skin grafts more slowly than mice primed with a single injection of tetramer or irradiated male spleen cells, suggesting clonal exhaustion or anergy. Our data highlight the ability of soluble MHC tetramers to identify scarce alloreactive T cell populations and the use of such tetramers to directly modulate an Ag-specific T cell response in vivo. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.167.7.3708 |