Loading…

Marker-assisted selection for identification of plant regeneration ability of seed-derived calli in rice (Oryza sativa L.)

Quantitative trait loci (QTL), associated with the ability of plant regeneration from seed-derived callus of rice, were mapped using a recombinant inbred (RI) population from Milyang 23/Gihobyeo. Each flanking marker, RZ474 and RZ575, tightly linked to two QTLs (qSGR-3-1 and qSGR-3-2) that are locat...

Full description

Saved in:
Bibliographic Details
Published in:Molecules and cells 2001-08, Vol.12 (1), p.103-106
Main Authors: Kwon, Y S, Eun, M Y, Sohn, J K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantitative trait loci (QTL), associated with the ability of plant regeneration from seed-derived callus of rice, were mapped using a recombinant inbred (RI) population from Milyang 23/Gihobyeo. Each flanking marker, RZ474 and RZ575, tightly linked to two QTLs (qSGR-3-1 and qSGR-3-2) that are located on chromosome 3 was used in marker-assisted selection (MAS). These markers were tested on IR 36/MG RI036 (F3), Milyang 23/MG RI036 (F3), and forty-one rice cultivars. A restriction fragment length polymorphism (RFLP) marker, RZ575, that is located on chromosome 3 could effectively differentiate lines with high and poor regeneration ability, based on marker genotypes. This marker might be applicable for screening rice germplasms with high regeneration ability. Its introgression into elite lines might also be valuable in breeding programs to develop highly responsive genotypes to tissue culture.
ISSN:1016-8478
DOI:10.1016/S1016-8478(23)17067-1