Loading…
Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring
A framework for the online optimization of protein induction using green fluorescent protein (GFP)‐monitoring technology was developed for high‐cell‐density cultivation of Escherichia coli. A simple and unstructured mathematical model was developed that described well the dynamics of cloned chloramp...
Saved in:
Published in: | Biotechnology and bioengineering 2000-08, Vol.69 (3), p.275-285 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 285 |
container_issue | 3 |
container_start_page | 275 |
container_title | Biotechnology and bioengineering |
container_volume | 69 |
creator | Chae, Hee Jeong Delisa, Matthew P. Cha, Hyung Joon Weigand, William A. Rao, Govind Bentley, William E. |
description | A framework for the online optimization of protein induction using green fluorescent protein (GFP)‐monitoring technology was developed for high‐cell‐density cultivation of Escherichia coli. A simple and unstructured mathematical model was developed that described well the dynamics of cloned chloramphenicol acetyltransferase (CAT) production in E. coli JM105 was developed. A sequential quadratic programming (SQP) optimization algorithm was used to estimate model parameter values and to solve optimal open‐loop control problems for piecewise control of inducer feed rates that maximize productivity. The optimal inducer feeding profile for an arabinose induction system was different from that of an isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction system. Also, model‐based online parameter estimation and online optimization algorithms were developed to determine optimal inducer feeding rates for eventual use of a feedback signal from a GFP fluorescence probe (direct product monitoring with 95‐minute time delay). Because the numerical algorithms required minimal processing time, the potential for product‐based and model‐based online optimal control methodology can be realized. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 275–285, 2000. |
doi_str_mv | 10.1002/1097-0290(20000805)69:3<275::AID-BIT5>3.0.CO;2-Y |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71202291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17664335</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3805-2fc3fcf85c9cdb6ffc4e4177b1862264cb9bf9b75d7280388a72cfc9961c0dc33</originalsourceid><addsrcrecordid>eNqFkt9u0zAYxSMEYmPwCsgXCMGFi_8kdlwQ0ihrqZgoSENo3FiOa7fekrjYibbyEDwzztoN7uYb61i_c_TZPllWYjTCCJE3GAkOERHoFUFplah4zcSYviO8GI-P5x_hh_lZ8Z6O0GiyeEvg-YPs8M7yMDtMFgZpIchB9iTGiyR5ydjj7ACjkuEc8cPszzSoxlz5cAmsD8C3tWsN8JvONe636pxvgbcgGO2byrWq7cAm-M64FpjrTTAxDkRSa7daQ23qGi5NG123BSdRr01weu0U0L52QPd11ycL6KNrV2A2_Qptf-NvfOs6H9Lp0-yRVXU0z_b7UfZ9enI2-QRPF7P55PgUrmh6BEisplbbstBCLytmrc5NjjmvcMkIYbmuRGVFxYslJyWiZak40VYLwbBGS03pUfZyl5tu86s3sZONi8P4qjW-j5JjgggR-F6Q4JxgIop7QcwZyykdwOd7sK8as5Sb4BoVtvL2TxLwYg-oqFVtg2q1i_-4vCgLPkz2bYddudps_4uRQ3Xk0AM59EDeVkcyIalM1ZGpOXJoTpJIThaSyPMbnTLhLtPFzlzfZapwKRmnyfnjy0zSaZHPyp9EfqZ_ARI0y9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17664335</pqid></control><display><type>article</type><title>Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring</title><source>Wiley</source><creator>Chae, Hee Jeong ; Delisa, Matthew P. ; Cha, Hyung Joon ; Weigand, William A. ; Rao, Govind ; Bentley, William E.</creator><creatorcontrib>Chae, Hee Jeong ; Delisa, Matthew P. ; Cha, Hyung Joon ; Weigand, William A. ; Rao, Govind ; Bentley, William E.</creatorcontrib><description>A framework for the online optimization of protein induction using green fluorescent protein (GFP)‐monitoring technology was developed for high‐cell‐density cultivation of Escherichia coli. A simple and unstructured mathematical model was developed that described well the dynamics of cloned chloramphenicol acetyltransferase (CAT) production in E. coli JM105 was developed. A sequential quadratic programming (SQP) optimization algorithm was used to estimate model parameter values and to solve optimal open‐loop control problems for piecewise control of inducer feed rates that maximize productivity. The optimal inducer feeding profile for an arabinose induction system was different from that of an isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction system. Also, model‐based online parameter estimation and online optimization algorithms were developed to determine optimal inducer feeding rates for eventual use of a feedback signal from a GFP fluorescence probe (direct product monitoring with 95‐minute time delay). Because the numerical algorithms required minimal processing time, the potential for product‐based and model‐based online optimal control methodology can be realized. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 275–285, 2000.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/1097-0290(20000805)69:3<275::AID-BIT5>3.0.CO;2-Y</identifier><identifier>PMID: 10861407</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Arabinose - pharmacology ; Biological and medical sciences ; Biomass ; Biotechnology ; Cell Division - drug effects ; chloramphenicol acetyltransferase ; Chloramphenicol O-Acetyltransferase - biosynthesis ; Chloramphenicol O-Acetyltransferase - genetics ; Chloramphenicol O-Acetyltransferase - metabolism ; Cloning ; Computer Simulation ; Enzymes ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Feedback ; Fluorescent Dyes - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial - drug effects ; Genes, Reporter - genetics ; Glucose - metabolism ; green fluorescent protein ; Green Fluorescent Proteins ; high-cell-density cultivation ; Isopropyl Thiogalactoside - pharmacology ; Kinetics ; Luminescent Proteins - biosynthesis ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; mathematical model ; Mathematical models ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Models, Biological ; Monitoring ; online optimization ; Online systems ; Optimization ; Proteins ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism</subject><ispartof>Biotechnology and bioengineering, 2000-08, Vol.69 (3), p.275-285</ispartof><rights>Copyright © 2000 John Wiley & Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1458571$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10861407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Hee Jeong</creatorcontrib><creatorcontrib>Delisa, Matthew P.</creatorcontrib><creatorcontrib>Cha, Hyung Joon</creatorcontrib><creatorcontrib>Weigand, William A.</creatorcontrib><creatorcontrib>Rao, Govind</creatorcontrib><creatorcontrib>Bentley, William E.</creatorcontrib><title>Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A framework for the online optimization of protein induction using green fluorescent protein (GFP)‐monitoring technology was developed for high‐cell‐density cultivation of Escherichia coli. A simple and unstructured mathematical model was developed that described well the dynamics of cloned chloramphenicol acetyltransferase (CAT) production in E. coli JM105 was developed. A sequential quadratic programming (SQP) optimization algorithm was used to estimate model parameter values and to solve optimal open‐loop control problems for piecewise control of inducer feed rates that maximize productivity. The optimal inducer feeding profile for an arabinose induction system was different from that of an isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction system. Also, model‐based online parameter estimation and online optimization algorithms were developed to determine optimal inducer feeding rates for eventual use of a feedback signal from a GFP fluorescence probe (direct product monitoring with 95‐minute time delay). Because the numerical algorithms required minimal processing time, the potential for product‐based and model‐based online optimal control methodology can be realized. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 275–285, 2000.</description><subject>Algorithms</subject><subject>Arabinose - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Cell Division - drug effects</subject><subject>chloramphenicol acetyltransferase</subject><subject>Chloramphenicol O-Acetyltransferase - biosynthesis</subject><subject>Chloramphenicol O-Acetyltransferase - genetics</subject><subject>Chloramphenicol O-Acetyltransferase - metabolism</subject><subject>Cloning</subject><subject>Computer Simulation</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Feedback</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial - drug effects</subject><subject>Genes, Reporter - genetics</subject><subject>Glucose - metabolism</subject><subject>green fluorescent protein</subject><subject>Green Fluorescent Proteins</subject><subject>high-cell-density cultivation</subject><subject>Isopropyl Thiogalactoside - pharmacology</subject><subject>Kinetics</subject><subject>Luminescent Proteins - biosynthesis</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>mathematical model</subject><subject>Mathematical models</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Models, Biological</subject><subject>Monitoring</subject><subject>online optimization</subject><subject>Online systems</subject><subject>Optimization</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkt9u0zAYxSMEYmPwCsgXCMGFi_8kdlwQ0ihrqZgoSENo3FiOa7fekrjYibbyEDwzztoN7uYb61i_c_TZPllWYjTCCJE3GAkOERHoFUFplah4zcSYviO8GI-P5x_hh_lZ8Z6O0GiyeEvg-YPs8M7yMDtMFgZpIchB9iTGiyR5ydjj7ACjkuEc8cPszzSoxlz5cAmsD8C3tWsN8JvONe636pxvgbcgGO2byrWq7cAm-M64FpjrTTAxDkRSa7daQ23qGi5NG123BSdRr01weu0U0L52QPd11ycL6KNrV2A2_Qptf-NvfOs6H9Lp0-yRVXU0z_b7UfZ9enI2-QRPF7P55PgUrmh6BEisplbbstBCLytmrc5NjjmvcMkIYbmuRGVFxYslJyWiZak40VYLwbBGS03pUfZyl5tu86s3sZONi8P4qjW-j5JjgggR-F6Q4JxgIop7QcwZyykdwOd7sK8as5Sb4BoVtvL2TxLwYg-oqFVtg2q1i_-4vCgLPkz2bYddudps_4uRQ3Xk0AM59EDeVkcyIalM1ZGpOXJoTpJIThaSyPMbnTLhLtPFzlzfZapwKRmnyfnjy0zSaZHPyp9EfqZ_ARI0y9U</recordid><startdate>20000805</startdate><enddate>20000805</enddate><creator>Chae, Hee Jeong</creator><creator>Delisa, Matthew P.</creator><creator>Cha, Hyung Joon</creator><creator>Weigand, William A.</creator><creator>Rao, Govind</creator><creator>Bentley, William E.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000805</creationdate><title>Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring</title><author>Chae, Hee Jeong ; Delisa, Matthew P. ; Cha, Hyung Joon ; Weigand, William A. ; Rao, Govind ; Bentley, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3805-2fc3fcf85c9cdb6ffc4e4177b1862264cb9bf9b75d7280388a72cfc9961c0dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Arabinose - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Cell Division - drug effects</topic><topic>chloramphenicol acetyltransferase</topic><topic>Chloramphenicol O-Acetyltransferase - biosynthesis</topic><topic>Chloramphenicol O-Acetyltransferase - genetics</topic><topic>Chloramphenicol O-Acetyltransferase - metabolism</topic><topic>Cloning</topic><topic>Computer Simulation</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Feedback</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial - drug effects</topic><topic>Genes, Reporter - genetics</topic><topic>Glucose - metabolism</topic><topic>green fluorescent protein</topic><topic>Green Fluorescent Proteins</topic><topic>high-cell-density cultivation</topic><topic>Isopropyl Thiogalactoside - pharmacology</topic><topic>Kinetics</topic><topic>Luminescent Proteins - biosynthesis</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>mathematical model</topic><topic>Mathematical models</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Models, Biological</topic><topic>Monitoring</topic><topic>online optimization</topic><topic>Online systems</topic><topic>Optimization</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Hee Jeong</creatorcontrib><creatorcontrib>Delisa, Matthew P.</creatorcontrib><creatorcontrib>Cha, Hyung Joon</creatorcontrib><creatorcontrib>Weigand, William A.</creatorcontrib><creatorcontrib>Rao, Govind</creatorcontrib><creatorcontrib>Bentley, William E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Hee Jeong</au><au>Delisa, Matthew P.</au><au>Cha, Hyung Joon</au><au>Weigand, William A.</au><au>Rao, Govind</au><au>Bentley, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2000-08-05</date><risdate>2000</risdate><volume>69</volume><issue>3</issue><spage>275</spage><epage>285</epage><pages>275-285</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>A framework for the online optimization of protein induction using green fluorescent protein (GFP)‐monitoring technology was developed for high‐cell‐density cultivation of Escherichia coli. A simple and unstructured mathematical model was developed that described well the dynamics of cloned chloramphenicol acetyltransferase (CAT) production in E. coli JM105 was developed. A sequential quadratic programming (SQP) optimization algorithm was used to estimate model parameter values and to solve optimal open‐loop control problems for piecewise control of inducer feed rates that maximize productivity. The optimal inducer feeding profile for an arabinose induction system was different from that of an isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction system. Also, model‐based online parameter estimation and online optimization algorithms were developed to determine optimal inducer feeding rates for eventual use of a feedback signal from a GFP fluorescence probe (direct product monitoring with 95‐minute time delay). Because the numerical algorithms required minimal processing time, the potential for product‐based and model‐based online optimal control methodology can be realized. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 275–285, 2000.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10861407</pmid><doi>10.1002/1097-0290(20000805)69:3<275::AID-BIT5>3.0.CO;2-Y</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2000-08, Vol.69 (3), p.275-285 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_71202291 |
source | Wiley |
subjects | Algorithms Arabinose - pharmacology Biological and medical sciences Biomass Biotechnology Cell Division - drug effects chloramphenicol acetyltransferase Chloramphenicol O-Acetyltransferase - biosynthesis Chloramphenicol O-Acetyltransferase - genetics Chloramphenicol O-Acetyltransferase - metabolism Cloning Computer Simulation Enzymes Escherichia coli Escherichia coli - cytology Escherichia coli - drug effects Escherichia coli - genetics Escherichia coli - metabolism Feedback Fluorescent Dyes - metabolism Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial - drug effects Genes, Reporter - genetics Glucose - metabolism green fluorescent protein Green Fluorescent Proteins high-cell-density cultivation Isopropyl Thiogalactoside - pharmacology Kinetics Luminescent Proteins - biosynthesis Luminescent Proteins - genetics Luminescent Proteins - metabolism mathematical model Mathematical models Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Models, Biological Monitoring online optimization Online systems Optimization Proteins Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism |
title | Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20for%20online%20optimization%20of%20recombinant%20protein%20expression%20in%20high-cell-density%20Escherichia%20coli%20cultures%20using%20GFP-fusion%20monitoring&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Chae,%20Hee%20Jeong&rft.date=2000-08-05&rft.volume=69&rft.issue=3&rft.spage=275&rft.epage=285&rft.pages=275-285&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/1097-0290(20000805)69:3%3C275::AID-BIT5%3E3.0.CO;2-Y&rft_dat=%3Cproquest_pubme%3E17664335%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g3805-2fc3fcf85c9cdb6ffc4e4177b1862264cb9bf9b75d7280388a72cfc9961c0dc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17664335&rft_id=info:pmid/10861407&rfr_iscdi=true |