Loading…
Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process
Copper and zinc removal from aqueous solution by chelating resin was investigated theoretically and experimentally in the present study. A multistage process was proposed as an alternative for enhancement of the heavy removal of the single-stage process. Heavy metal mass balance equations with empir...
Saved in:
Published in: | Journal of hazardous materials 2000-08, Vol.76 (1), p.139-153 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Copper and zinc removal from aqueous solution by chelating resin was investigated theoretically and experimentally in the present study. A multistage process was proposed as an alternative for enhancement of the heavy removal of the single-stage process. Heavy metal mass balance equations with empirical Freundlich adsorption isotherm were developed to represent the multistage process and the theoretical model permits determination of the inter-stage heavy metal concentrations and the total amount of chelating resin required for achieving a desired level of heavy metal removal. Optimization of the linearized theoretical model shows that equal division of the total amount of chelating resin among all stages of the multistage process yields the best results in terms of saving of chelating resin for a given heavy metal removal or enhanced heavy metal removal for a given total amount of chelating resin. Experimental tests were also conducted to establish the equilibrium adsorption of heavy metal by the chelating resin and to empirically verify the advantages of the multistage adsorption process. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/S0304-3894(00)00207-7 |